
Multiprocessor SoPC-Core for FAT volume computation

Armando Astarloa*, Unai Bidarte, Jesús Lázaro, Aitzol Zuloaga, Jagoba Arias

Department of Electronics and Telecommunications, Faculty of Engineering, University of the Basque Country, Urquijo s/n, E-48013 Bilbao, Spain

Received 20 October 2003; revised 4 May 2004; accepted 5 January 2005

Available online 7 February 2005

Abstract

This paper presents the design, co-simulation and implementation of a Soft-core for the autonomous reading of a file stored into IDE

devices formatted with FAT16 File Data System. This application illustrates a novel core architecture that embeds multiple customized tiny

microprocessors and standard interfaces into the core. The reconfigurable nature of the FPGA implementation allows easy modifications of

the microprocessors and peripheral hardware to cover other control applications. Emphasis is placed on presenting how the co-design and co-

simulation of the processors, additional hardware, buses and communications has been possible with the developed specific Virtual

Environment.

q 2005 Elsevier B.V. All rights reserved.

Keywords: IP Core; SoPC; FPGA; VHDL; Co-design

1. Introduction

Nowadays technology is able to manage millions of logic

gates in a single integrated circuit working at frequencies of

up to 1 GHz. System-on-Chip (SoC) design methodology is

evolving very fast in order to make these chips a reality.

Rajsuman defines the SoC concept as “an integrated circuit

designed connecting multiple independent VLSI blocks,

that performs all the functionalities of the application” [1].

This definition emphasizes the importance of the previously

designed and verified blocks. Borel gives the following

definition for the same concept: “an integrated circuit that

integrates process, control, storage, communication, sensor

and actuation capacities” [2].

A generic SoC could include a microprocessor or

microcontroller, memories (SDRAM, DRAM, ROM,

FLASH, CAM, etc.), clock synchronization resources

(DLL or PLL and clock distribution buffers), communi-

cation interfaces (USB, PCI, IDE, RS232, EPP, CAN, etc.),

data converters (A/D or D/A), input/output units, direct

memory access controllers and application specific cores.

VLSI market imposes short design cycles, high complex-

ity and high performance. Development time can be enlarged

only as far as time-to-market parameter allows, which

usually is not what designers would desire. And although

having a short designing windows, complexity and perform-

ance cannot be reduced, in order to maintain the competi-

tiveness. These design requirements are becoming more and

more crucial, and complex SoC design methodology is

evolving very fast, for the designers to have a powerful

design method to manage the challenges of the technology.

There are two main strategies to face the technology gap.

The groundwork of the first one is the elevation of the

hardware description abstraction level, using system level

languages. The second one is based on reusing previously

designed and verified Intellectual Property (IP) blocks,

known as IP Cores. The first one requires advanced and

high-level hardware description and synthesis tools,

whereas the second one requires extra time in the cores

description process in order to get easily reusable blocks.

The design team in which the authors of the article

work has several years experience in applying the

second strategy. An extensive library has been created

including predesigned and preverified cores with a specific

functionality but useable in many application fields. The

core described in the present work is also present in this

library.

0141-9331/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2005.01.001

Microprocessors and Microsystems 29 (2005) 421–434

www.elsevier.com/locate/micpro

* Corresponding author. Tel.: C34 94 601 7304; fax: C34 94 601 4259.

E-mail address: jtpascua@bi.ehu.es (A. Astarloa).

http://www.elsevier.com/locate/micpro


The cores, also named Virtual Components, may come in

several forms. They may be hard, with all the gates and

interconnections placed and routed and all the silicon layers

defined. Hard-component performance is thus predictable.

Other Virtual Components can be soft, with only the higher

level, register transfer level representation defined. Such

components must be synthesized, placed, and routed in the

physical representation. Soft Virtual Components are easy

to modify and facilitate reusability, but require more

verification, take longer to implement, and have less

predictable performance than hard Virtual Components.

Finally, a third variety of Virtual Components, firm, comes

as a register transfer level description with some level of

physical floorplanning or placement, but not the final

routing. These Virtual Components provide more predict-

able performance than soft components, but still allow some

flexibility in block shape and final placement [3]. For all

cores, a commonly accepted assumption in core-based

system design is that all new designs start with a description

in one of the two popular hardware description languages:

VHDL or Verilog. Our goal is to design SoPC cores that

maximize the future reuse possibilities, so the core

described in this work, as well as most of the cores included

in the previously noted library are soft cores. From now on,

whenever the term core is used, it will make reference to a

soft-core.

Previously, IP Cores used non-standard interconnection

schemes that made them difficult to integrate. This required

the creation of custom glue logic to connect each of the

cores together. Some years ago the design team decided to

adopt a standard interconnection scheme to integrate the

cores more quickly and easily in the final applications.

General purpose interfaces defining the standard data

exchange between IP Cores were studied, and the Wishbone

SoC interconnection architecture for portable IP Cores was

selected [4]. These are some reasons that justify the adopted

decision: robust standard, facilitates structured design

methodologies, independent of the technology, flexible,

well documented, master/slave synchronous protocol,

completely free and the existence of many users that share

their projects using internet.

This work is focused on SoC applications using Field

Programmable Gate Array (FPGA) technology, which is

known as System-on-Programmable-Chip (SoPC). In this

way, only the digital part of the system can be integrated in

this chip. This digital part is what usually can be integrated

in the so called SoC device even when using ASIC

technology. The reconfigurable nature of the FPGAs allows

fast and simple modifications of the proposed architecture to

cover other control dominated applications.

2. Motivation and related work

There are many systems that need a portable massive

storage device as source of data. Well known examples are

digital cameras, MP3 players, electronic data acquisition

systems and embedded systems in general. Furthermore, it

is usually necessary, sooner or later, some processing of the

data stored in the storage device, in most cases using a

Personal Computer. That constraint makes necessary the use

of the File System adopted by the operating system that runs

on the PC to organize the data into the storage device.

Embedded systems based on powerful microcontrollers can

manage the communication with the storage device and the

File System processing the same way they manage any other

task. Depending on the application, the overhead produced

by this task can be acceptable, especially if the later

processing of the read data is done at the same CPU. Related

work about academic FPGA implemented IDE cores can be

found in [5] (ATA/ATAPI-5 modes) and in [6] (PIO mode).

Both hardware modules need a host to set the ATA

commands to the IDE device and to process the FAT

volume. These cores and the commercial ones available in

[7] or [8], fit with SoC powerful embedded microprocessors.

But there are many cases where the employment of an

independent and specific module for the communication with

the storage device and the data extraction from the File Data

System might be suitable: embedded designs with high-

performance requirements, applications with extensive data

exchange requirements, SoC based autonomous DVD

rewriters [9], printers with Compact-Flash device support,

etc. In all these situations, the use of an independent core

which puts the read and processed data into the internal SoPC

high-speed bus fits with the system operativity better. On the

other hand, the reutilization of the architecture is simplified

because if the data source element changes (a different

communication channel or another local storage device) it

can be easily replaced and the rest of the architecture may be

maintained without any modification [10].

A conventional IDE core does not provide the extracted

data from a file stored in an IDE volume to an internal on-

chip bus. This could be desirable for the mentioned

applications. If this operativity want to be resolved by a

single core, it must be noticed that the control of the ATA

protocol and the latter FAT process are complex tasks. This

makes the design of the core using conventional hardware

architectures not viable. The required FPGA consumed will

be prohibitive with that approach.

The result of the work presented in the article is a novel

intra-core architecture that embeds fast and small micro-

controllers in conjunction with custom HDL hardware and

standard interfaces either for internal and external inter-

connections. The application of the reusing concept to the

SoC design methodology forces not only the use of a

standard interconnection architecture for IP Cores, but the

enhancement of the core portability when the design of the

core is performed. To illustrate this architecture an

independent core for FAT16 processing is presented.

The design methodology adopted tries to find a good

trade-off between the area requested, the speed performance

and the reusability facilities.

A. Astarloa et al. / Microprocessors and Microsystems 29 (2005) 421–434422



Download English Version:

https://daneshyari.com/en/article/10343679

Download Persian Version:

https://daneshyari.com/article/10343679

Daneshyari.com

https://daneshyari.com/en/article/10343679
https://daneshyari.com/article/10343679
https://daneshyari.com

