
Programming paradigms for reconfigurable computing

Gareth Lee, George Milne*1

School of Computer Science and Software Engineering, The University of Western Australia, Perth, WA 6009, Australia

Accepted 21 January 2005

Available online 22 February 2005

Abstract

High-level programming paradigms are examined to determine their appropriateness for describing systems, which are amenable to

automated compilation onto a reconfigurable computing platform. We aim to find a set of language features to act as a basis for future

language development which: provide a concise description of the system to be realised; provide clear and intuitive semantics; abstract the

underlying technology and are appropriate to the underlying technology.

Clearly language design is a subjective process, but we have adopted a systematic approach by assessing the efficacy of existing

programming and hardware description languages. We examine the languages Java, VHDL, Standard ML and Circal. Our method also bases

the comparison on a set of properties drawn from an archetypal example which we know maps well onto reconfigurable computing platforms.

We conclude that none of these established languages has all the properties required for describing reconfigurable computation.

This approach leads to insight into the capabilities of existing languages and allows us to determine the essential characteristics of future

languages oriented to reconfigurable computing.

q 2005 Elsevier B.V. All rights reserved.

Keywords: Circal; Field-programmable gate array; Hardware description language; Java; Reconfigurable computing; Standard ML; VHDL

1. Introduction

Continued increases in circuit density have elevated the

field-programmable gate array (FPGA) from a utility device

with which electronic engineers implement glue logic, into a

fully-fledged computer architecture. Applications for

FPGAs are still rather specialised and they are mostly

used, much as embedded DSP devices, in high performance

signal processing systems. However, given their ever

decreasing cost, high performance and low power require-

ments, FPGAs are becoming more attractive in a wide range

of mobile computing and embedded applications, either as

stand alone devices or in concert with general purpose

processors.

Reconfigurable computers are general-purpose compu-

ter devices built from FPGAs and composed of a large

matrix of configurable logic blocks (CLBs). A simplified

FPGA schematic is shown in Fig. 1: section (a) shows a

matrix of CLBs with each connected to its immediate

neighbours and (b) the three distinct elements which make

up each CLB:

† One or more functional units, programmable to

implement Boolean functions;

† One or more latches which allow state to persist over

time;

† A programmable crossbar router which allows each

CLB to connect its inputs and outputs to its neighbours

(or via its neighbours to CLBs further afield).

For example, grouping together a number of functional

units and configuring them to behave as full-adders allows

an ALU to be constructed; similarly grouping together

latches allows arbitrary registers to be allocated. Each of the

CLBs operate concurrently as do all the communication

signals between them.

The behaviour of the functional units and the connections

between CLBs can be configured by setting bits in a global

random access memory, hence the configuration of any

0141-9331/$ - see front matter q 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2005.01.002

Microprocessors and Microsystems 29 (2005) 435–450

www.elsevier.com/locate/micpro

* Corresponding author. Tel.: C61 8 6488 2717; fax: C61 8 6488 1089.

E-mail address: george@csse.uwa.edu.au (G. Milne).
1 This work was funded by a grant from the Australian Research Council.

http://www.elsevier.com/locate/micpro


CLB can be changed at any time by an external controller.2

Thus, the reconfigurable computer can be programmed to

form arbitrary circuits, rather than following a sequence of

instructions, as does a general purpose computer.3 Reconfi-

gurable computers can also be programmed to form a circuit

specialised to solving a particular problem in a highly

concurrent manner. Typically pipelined circuits which

implement systolic arrays or cellular automata are created;

pipelines which are wide (acting on each of the elements of

a vector) and deep (concurrently performing a long

sequence of steps) provide the greatest concurrency.

With the widespread use of reconfigurable computers

based on FPGAs, will come additional demands on the tools

used to program them and validate the systems that result.

This paper focuses on the use of high-level languages

(HLLs) in the design of systems for reconfigurable

computers. It has been widely demonstrated in the software

development community that the use of HLLs, and the

design abstraction which results, offer substantial

productivity gains. This is also true of reconfigurable

computing which delivers computational throughput by

orchestrating massive concurrency, rather than relying on

high clock rates.

Most current languages for reconfigurable computing

have one of two origins:

† They are hardware description languages (HDLs)

designed for describing static architectures in ASIC

devices which have been adapted for use with FPGAs:

for example, VHDL [1] and Verilog [2]; or

† They are adapted from systems programming languages,

such as Handel-C [3] (based on C), SystemC [4] (based

on CCC) or Java [5] (by using Xilinx’s Forge software).

In both cases, the choice of language is seen as being of

secondary importance and most of the effort goes into

developing sophisticated compilers. It is assumed that

designers familiarity with the base language will be

sufficient to overcome any mismatch between the language

paradigm and characteristics of the underlying hardware.

Our approach is to consider the language issue afresh; to

avoid subjectivity we focus on language paradigms and

capabilities rather than syntactic issues. We consider object

orientation, functional programming, direct hardware

description and process algebras. We have deliberately

selected a wide range, including approaches not tradition-

ally associated with reconfigurable computing.

In this paper, we compare and contrast these distinct

language paradigms to assess their efficacy for program-

ming reconfigurable computers. In each case, a representa-

tive language has been chosen to allow us to make concrete

comparisons. We take an experimental approach by

encoding a test example using each of the chosen languages

to allow a comparison of the paradigms using a number of

essential attributes and capabilities.

Our approach also differs from many previous authors

who have used languages, such as those under consideration

here, as ‘circuit generators’ [6,7]. In this case, the languages

are used to generate low-level structure; it is assumed the

designer has already decided on the best circuit to solve a

problem and needs to decide how to physically lay out the

circuit using available FPGA resources. In contrast, we have

adopted a high-level approach, using the languages to

describe the system in the most literal and transparent

fashion possible. We assume compiler and synthesis tools

are available to map the design onto FPGA resources.

The paper is structured as follows: In Section 2, we

introduce the test example, a regular expression matcher,

which we previously demonstrated is suited to implemen-

tation using reconfigurable computers [8,9]. In Section 2.2,

we discuss the properties of the example and how these are

representative of a much larger category of systems, which

are amenable for implementation on reconfigurable com-

puting platforms. In Section 3, we introduce the target

languages, which act as representatives of the paradigms

Fig. 1. The key elements of a field-programmable gate array.

2 Typically this configuration controller will be external to the FPGA

logic but some manufacturers are now integrating a general purpose

processor within the die and even allowing self reconfiguration from within

the FPGAs logic.
3 Such stored-programs computers are normally based on the von

Neumann architecture where data and instructions are transferred in and out

of a processor core across a single bus from external memory (or the related

Harvard architecture, which uses separate busses for instructions and data).

G. Lee, G. Milne / Microprocessors and Microsystems 29 (2005) 435–450436



Download English Version:

https://daneshyari.com/en/article/10343680

Download Persian Version:

https://daneshyari.com/article/10343680

Daneshyari.com

https://daneshyari.com/en/article/10343680
https://daneshyari.com/article/10343680
https://daneshyari.com

