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Correctly diagnosing the cancer stage is most important for selecting an appropriate cancer

treatment option for a patient. Recent advances in microarray technology allow the cancer

stage to be predicted using gene expression patterns. The cancer stage is in ordinal scale.

In  this paper, we employ strict ordinal regressions including cumulative logit model in tra-

ditional statistics with data dimensionality reduction, and distribution free approaches of

large margin rank boundaries implemented by the support vector machine, as well  as an

ensemble ranking scheme to model the cancer stage using gene expression microarray data.

Predictive genes included in models are selected by univariate feature ranking, and recur-

sive feature elimination. We  perform cross-validation experiments to assess and compare

classification accuracies of ordinal and non-ordinal algorithms on five cancer stage microar-

ray  datasets. We conclude that a strict ordinal classifier trained by a validated approach can

predict the cancer stage more accurately than traditional non-ordinal classifiers without

considering the order of cancer stages.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1.  Introduction

Microarray technology measures expression levels of thou-
sands of genes in one experiment. Using broad gene
expression patterns as signatures, subtypes of a single can-
cer were discovered, and predicted on test tissue samples [7].
Since then, numerous algorithms have been developed based
on supervised learning techniques including linear discrim-
inate analysis, logistic regression, artificial neural network,
support vector machine, etc. to classify high-dimensional
microarray data into predefined cancer classes using a rela-
tively small number of examples (usually <100) [5,11,16,27].

Staging is a special case of cancer classification by the
extent of growth and spread of a cancer. One most common
cancer staging system, the TNM system, describes the cancer
growth in a patient using the phenotypic variable T to repre-
sent the size of tumor, N the degree of spread to lymph node,
and M the presence of metastasis. Other variables, such as
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the grade (G) that describes how poorly cancer cells differen-
tiate observed under microscope, are also used by the system.
The overall stage of a cancer can be defined by grouping these
TNM variables. Like other health status variables, cancer stage
variables can be in ordinal scale. For example, the primary
tumor of a cancer can be classified into 5 stages T0, T1, . . .,  T4.
The stages are ordered in the sense that a lower (higher) stage
indicates a smaller (larger) extent of tumor growth, and neigh-
boring tissue invasion at diagnosis. Staging cancer is most
important for determining a cancer treatment option, and pre-
dicting survival in patients. Recently, gene expression patterns
have been utilized as signatures to predict cancer stage, his-
tological tumor grade, and disease outcome [6,12,20,21,23,25].

A variety of methods for modeling ordinal response data
were established using or redesigning regular classifica-
tion methods [1,3,10,14,18]. Their applications in information
retrieval have inspired much recent research works [13].
In this paper, we employ strict ordinal regressions includ-
ing cumulative logit model in traditional statistics [14]
with data dimensionality reduction, and two distribution
free approaches of large margin rank boundaries imple-
mented by the support vector machine [10,18],  as well as an
ensemble ranking model to model the cancer stage using gene

0169-2607/$ – see front matter © 2012 Elsevier Ireland Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cmpb.2012.07.001

dx.doi.org/10.1016/j.cmpb.2012.07.001
www.intl.elsevierhealth.com/journals/cmpb
mailto:cchen@amath.nchu.edu.tw
dx.doi.org/10.1016/j.cmpb.2012.07.001


c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e 1 0 8 ( 2 0 1 2 ) 1070–1077 1071

expression microarray data. Predictive genes included in clas-
sifiers are selected by means of univariate feature ranking [5],
and recursive feature elimination [8] to improve qualities of
classifiers. We  evaluate and compare prediction accuracies
of ordinal classifiers and traditional non-ordinal classifiers
without considering the order of cancer stage by performing
external cross-validation experiments [19,26] on five publicly
accessible cancer stage microarray datasets.

The paper is organized as follows. In Section 2, we  describe
ordinal response model, various training techniques of ordi-
nal regression, together with feature selection methods for
creating cancer stage classifiers using microarray data. Com-
putational methods and settings are also included in the
section. In Section 3, we describe performances of classi-
fiers, both ordinal and non-ordinal, on cancer stage microarray
datasets. Conclusions and comments are included in Sections
4 and 5.

2. Method

2.1. Background

Consider a cancer classification problem in which the covari-
ate vector x = (x1, . . . , xp)T ∈ X ⊆ R

p contains the expression
levels of p genes, and the response variable y ∈ Y = {1, 2, . . ., R}
labels the predefined cancer subgroup of tissue sample. Given
a set {(xi, yi)}N

i=1 ⊂ X × Y of N training examples, the pri-
mary goals are to classify new patient samples, and identify
gene features responsible for classification using informa-
tion provided by examples. Assume elements in Y represent
ranked cancer stages such that 1 ≺ 2 ≺ · · · ≺ R. The symbol
“≺ ” denotes the order relation between stages which rep-
resent “is a lower stage than”. In this case, y is in ordinal
scale, and can be modeled as a coarsely measured con-
tinuous latent variable z ∈ R  such that the rank y = r is
corresponding to the interval �r−1 < z < �r, where rank thresh-
olds −∞ = �0 < �1 < · · · < �R−1 < �R = +∞ divide the real line into R
consecutive intervals. The decision function z = f(x) in a pre-
defined model space, and ordered thresholds �s are learned
from training examples according to optimization principles.
The above modeling is usually known as the (strict) ordi-
nal regression. Let �l : X �→ R, l = 1, . . . , L, with L probably

N,  be fixed basis functions that perform the feature extrac-
tion from the gene expression vector. Assume f(x) has the
linear form 〈�· �(x) 〉, where � = (ˇ1, . . .,  ˇL)T is the vector of
predictor weights that maps the vector of predictive fea-
tures �(x) = (�1(x), . . .,  �L(x))T to a value by dot product in R

L.
We denote 〈�(x)· �(x′) 〉 by the kernel function k(x, x′) for
x, x′ ∈ X.

2.2.  Classifiers  and  solution  methods

2.2.1. Cumulative  logit  model  using  kernel  principle
components
The ordinal regression can be trained by different optimization
schemes. As one most implemented method, the cumulative
logit model (CLM) [14] assumes z = f(x) + ε, where the random
component ε distributes according to the standard logistic dis-
tribution. Under the assumption, the conditional probability

Pr(y  � r|x) of rank no greater than r given x is Pε(�r − f(x)), where
Pε(�) = (1 + exp(− �))−1 is the sigmoid function. The CLM, equiv-
alent to the classic binary logistic regression when R = 2, is
solved by the minimum of penalized negative log-likelihood
of multinomial distribution

(�̂1, ..., �̂R−1, �̂) = arg min
�1<···<�R−1

{
N∑

i=1

− ln �ε(�yi
, 〈� · �(xi)〉) + �

2
〈� · �〉

}
, (1)

where �ε(�r, f(x)) = Pε(�r − f(x)) − Pε(�r−1 − f(x)) > 0 is the condi-
tional probability of rank r given x, and the coefficient � > 0
of quadratic penalty controls the fitting accuracy. While (1) is
uniquely solvable, the large L can make the numerical process
computationally inefficient. To reduce the problem size, we
let �(x) = D−1UT(k(x1, x), . . . , k(xN, x))T ∈ R

N. The columns of
U ∈RN×N are orthonormal eigenvectors associated with eigen-
values d1 ≥ · · · ≥ dN ≥ 0 of kernel matrix K = (k(xi, xi′ )) ∈ R

N×N

of training data, D−1 ∈ R
N×N is a diagonal matrix contain-

ing diagonal elements d−1
1 , . . . , d−1

n , 0, . . . , 0, and the rank n
of K can be considerably lower than L. Herein, �(x) contains
principle components (PCs) of �(x) (a.k.a. kernel principle com-
ponents (KPCs) of x) in the feature space if � is centered, i.e.,∑N

i=1�(xi) = 0 [17]. The 1st-order optimality condition implies

that �̂ can be written as
∑N

i=1 ˆ̨ i�(xi) for some ˆ̨ i. Substituting
the form into (1),  we arrive at an alternative problem

(ϑ̂1, ..., ϑ̂R−1, �̂J) = arg min
ϑ1<···<ϑR−1

{
N∑

i=1

− ln �ε(ϑyi
, 〈� · �(xi)〉) + �

2
〈� · �〉

}
, (2)

where � ∈RJ × {0}N−J, and J ∈ {1, . . .,  n}. Once the solutions of (2)
are obtained, �̂ = ( ˆ̨ 1, . . . , ˆ̨ N)T is approximated by (equal to if
J = n) UD−1�̂J, and �̂s by ϑ̂s. The decision function f̂ (x) = 〈�̂ · �(x)〉
is given by the kernel function expansion

∑N

i=1 ˆ̨ ik(xi, x) using
approximated ˆ̨ i as coefficients.

2.2.2.  Support  vector  ordinal  regression  (I)
The standard two-class support vector machine (SVM) finds
a predictor weight vector and a single threshold separating
output values of decision function of training data from each
class with largest distance between the threshold and a clos-
est output value (margin) [22]. Similar to the way that the CLM
extends the binary logistic regression model, a support vec-
tor ordinal regression (SVOR(I)) generalizes the binary SVM to
find R − 1 ordered thresholds in the real line for R ranks using
the large margin principle [4,18]. For each s = 1, . . ., R − 1, let the
training examples be divided into two classes and labeled as
ys

i
= −1 if yi � s, and ys

i
= +1 if s ≺ yi. The mechanism of SVOR(I)

is to solve

(�̂1, ..., �̂R−1, �̂, �̂1
1 , ..., �̂R−1

N ) = arg min

{
1
2

〈� · �〉 + C

R−1∑
s=1

N∑
i=1

�s
i

}
,

subject to ys
i
(〈� · �(xi)〉−�s)  ≥ 1−�s

i
, �s

i
≥ 0, i=1, . . . , N, s=1, . . .  , R − 1,

(3)

where �s
i

is the error yielded by 〈�· �(xi) 〉 being within the
margin or on the wrong side of �s, and the coefficient C > 0
controls the total amount of training errors. This training
model maximizes the smallest margin separating values of
decision function of data points from a lower (ys

i
= −1), and an

upper (ys
i

= +1) class with tolerated errors. Introducing the 1st-
order Karush–Kuhn–Tucker (KKT) optimality conditions into
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