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a  b  s  t  r  a  c  t

Analysis of the identifiability of a given model system is an essential prerequisite to the

determination of model parameters from physical data. However, the tools available for the

analysis of non-linear systems can be limited both in applicability and by computational

intractability for any but the simplest of models. The input–output relation of a model sum-

marises the input–output structure of the whole system and as such provides the potential

for  an alternative approach to this analysis. However for this approach to be valid it is

necessary to determine whether the monomials of a differential polynomial are linearly

independent. A simple test for this property is presented in this work. The derivation and

analysis of this relation can be implemented symbolically within Maple. These techniques

are applied to analyse classical models from biomedical systems modelling and those of

enzyme catalysed reaction schemes.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1.  Introduction

Structural identifiability methods test whether the parame-
ters of a parameterised model can be uniquely determined
(or otherwise) from perfect, continuous and noise free, obser-
vations. Determining structural identifiability is essential if
parameters are to be estimated from real experimental data.
For linear models a variety of techniques can be employed
for this analysis, see examples in [1].  Methods by which non-
linear models can be analysed are rather more  limited, with
only the Taylor series approach [2];  similarity transformation
approach [3];  differential algebra approaches (see, for example,
[4,5]); and other related approaches [6,7], available. Further-
more, each of these techniques has certain weaknesses when
applied to non-linear systems; which are frequently of partic-
ular interest in biomedical systems modelling.

For linear models strict upper limits on the number of
Taylor series coefficients required to determine the possible

∗ Corresponding author. Tel.: +44 116 252 5060; fax: +44 116 223 1093.
E-mail address: djb69@le.ac.uk (D.J. Bearup).

solutions are known [8].  However, for non-linear systems only
a loose upper limit has been determined [9] and, as such, it is
typically difficult to prove that a given model is unidentifiable
using this technique. Furthermore, the complexity of higher
order Taylor series coefficients often renders this approach
computationally intractable. The generalisation of the sim-
ilarity transform approach to non-linear models provides a
relatively straightforward test for unidentifiability but is more
difficult to use to prove local or global identifiability [10].

The original differential algebra approach [4] requires
analysis of characteristic sets, the calculation of which can
be computationally expensive. Analysis of the input–output
relationship [5] is less computationally expensive, but it is
necessary to establish the linear independence of the mono-
mials of this relationship before analysis can proceed. Some
implementations of this approach fail to check this require-
ment, while others make use of an appropriate Wronskian
calculation [11]. Furthermore, the use of numerical solutions
at certain stages of the analysis in some implementations
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renders the results somewhat non-generic thereby limiting
their applicability [12,13].

For any of these techniques the use of computational
packages is typically necessary. For simple models it may be
possible to implement them by hand; however the majority
of models prove too complex for such an approach. Instead
these methods are typically implemented using a symbolic
computer algebra package. The use of such packages to
solve complex equations is computationally expensive, con-
sequently it is desirable to use the simplest equations possible
when determining identifiability. This is the chief advantage of
the input–output relationship approach over the Taylor series
approach in that it typically produces relatively simple equa-
tions to solve for the model parameters.

In this work an implementation of the input–output
approach in Maple using the Rosenfeld–Gröbner algorithm
is presented. A criterion for the linear independence of
the monomials of the relation analysed is introduced. The
input–output relationship approach is first applied to a clas-
sical model from biomedical systems modelling. The results
obtained agree with those published using alternative tech-
niques. The approach is then applied to three enzyme reaction
models. Study of such systems is a prerequisite to construc-
tion of metabolic pathway models, which have applications
to drug development and design [14]. However, typically they
prove too complex for analysis using other techniques.

2. Structural  identifiability

A parameterised state space model, �(p), can be defined as
follows [15]:

x(1)(t, p) = f(x(t, p), p) + u(t)g(x(t, p), p), (1)

x(0, p) = x0(p), (2)

y(t, p) = h(x(t, p), p), (3)

where x(t, p) = (x1(t, p), . . .,  xn(t, p))T is the state vector which lies
in a connected open subset M(p)  ⊂ R

n. Note that x(t, p) and y(t,
p) are also dependent on u(t), due to Eq. (1).  This dependence
is suppressed in the notation in the interests of brevity. To
maximise flexibility Lagrange’s notation for a derivative with
respect to time, dx/dt = x(1), is used.

The vector of model outputs, y(t, u; p) ∈ R
r, comprises the

combination of elements of the state vector which are mea-
sured experimentally. Let p = (p1, . . .,  pq)T be a vector of
unknown model parameters which lies in some open set,
� ⊂ R

q, of feasible values. The input u(t) ∈ U, the set of admis-
sible controls, is assumed to be analytic for t ≥ 0 and rational
in p. The functions f(· , p) and g(· , p) which determine the time
dependent state transitions, and h(· , p) which determines the
model outputs, are similarly analytic on M(p) and rational with
respect to p [15].

Structural identifiability is concerned with whether the
parameter vector is uniquely determined by the resulting
input–output structure. For a model � a parameter vector p

is indistinguishable from p, denoted p ∼ p, if, for all inputs, u,
they give rise to identical model outputs, that is:

y(t, p) = y(t, p), for all t ≥ 0. (4)

Following the definitions presented by Hattersley et al. [16], for
generic p ∈ � (that is, for all p ∈ � except for a subset of a closed
set of Lebesgue measure zero) a parameter pi is locally iden-
tifiable (LI) if there exists a neighbourhood of points around
p, N(p), such that if p ∈ N(p), p ∼ p implies that pi = pi. If no
such N(p) exists for pi it is unidentifiable. If N(p) = � for pi then
it is globally identifiable (GI). A model is unidentifiable if any
parameter is unidentifiable. It is structurally locally identifi-
able (SLI) if all parameters are LI and at least one is not GI. It is
structurally globally identifiable (SGI) if all parameters are GI.

3. The  input–output  relationship  approach

The input–output relationship approach derives from the dif-
ferential algebra approaches developed by Ljung and Glad [4].
The differential equations and equilibrium relations defining
the system model are the generators of a radical differential
ideal [17] (note that this requires the system to be stated in
polynomial terms. However, in general a rational system can
be rearranged to a polynomial system as described by Margaria
et al. [9].  As such this approach is more  broadly applicable to
rational as well as polynomial systems). This differential ideal
can be decomposed into an intersection of differential ideals
using the Rosenfeld–Gröbner algorithm [18] corresponding to
the general and singular solutions of the differential equa-
tions [19]. Given an appropriate choice of ranking each ideal
contains expressions in derivatives of the input and out-
put functions only [20]. This (possibly vector) function is the
input–output relation.

The examples presented in this work are all uncontrolled
and have a single output, y(t, p). Consequently, for these appli-
cations, the input–output relation is a scalar function in y(t, p)
and its derivatives. The following analysis can be readily gen-
eralised to the more  complex controlled case with multiple
outputs.

The input–output relation, denoted R((y(i)(t, p))mi=0, p) where
m is the order of the highest derivative of y(t, p) that appears,
can be formally considered a differential polynomial over the
differential ring K{y}. As for a normal polynomial, a differential
polynomial is a linear sum of monomials in this case arising
from a differential ring. Thus a monomial in this work is a
product of y and its derivatives. For a formal definition of these
concepts see [17] or more  recently [18].

Note that the input–output relation is one of the genera-
tors of an ideal, consequently it must equal zero. However, the
coefficients of this differential polynomial are generically non-
zero as they are linear combinations of the elements of the
parameter vector, p. Hence the monomials of the input–output
relation are linearly dependent. It can, however, be rearranged
to give the highest order derivative of y(t, p) as a (possibly
rational) function of strictly lower order derivatives as follows:

y(t, p)(m)) = R̂((y(i)(t, p))m−1
i=0 , p). (5)
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