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a b s t r a c t

This paper is concerned with the recovery of an unknown symmetric density function in
the weighted Helmholtz equation with Dirichlet boundary conditions from the lowest few
eigenvalues. By using the piecewise constant function to approximate the density function
andusing the Rayleigh–Ritz approach to discretize the differential equation, the continuous
inverse eigenvalue problem is converted to a related matrix inverse eigenvalue problem
and then a least squares problem for the discrete model is formulated. The solution of the
least squares problem via an iterative method is discussed and then an approximation
to the unknown density is recovered. Numerical experiments are given to confirm its
competitiveness.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concernedwith the two-dimensional inverse spectral problem for the clampedmembrane.We look
for a way to recover the unknown density function ρ > 0 from a single set of eigenvalues of

−1u = λρu in R,
u = 0 on ∂R,

(1)

where R is the known rectangle (0, π/a)×(0, π). As in [1], we assume that them lowest eigenvalues of (1) are given, and the
unknown density ρ is symmetric with respect to themidlines of R and is also a small perturbation of ρ = 1 in L∞. The direct
problem is finding a real number λ such that the boundary value problem (1) has a non-trivial solution for a given ρ > 0.
When ρ(x) > 0 is smooth sufficiently, it is shown in [2] that the solution of (1) belongs to C5,σ (R) based on the well-known
regularity theorem given in [3] for the solution of a uniform elliptic Laplace boundary value problem on a rectangle. Here,
0 < σ < 1 and C5,σ (R) is the space of functions in C5(R) whose derivatives of order 5 are Hölder continuous. Also, it is
pointed out in [4] that for ρ > 0, there exists a countable set of eigenvalues and the corresponding orthonormal system of
eigenfunctions {un(x, y)} (n = 1, 2, . . .) forms a basis in L2 with the weight ρ.

The motivation for this work is the fact that the Helmholtz equation arises naturally in many scientific and engineering
areas, and the inverse problems appears very naturally in various applications including biomedical imaging [5], impedance
imaging [6], optical imaging for non-destructive evaluation, and wave propagation and scattering [7]. For example, the
vibrating elastic membrane which can be described by (1) is a classical problem in mathematical physics. Typically the
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geometry of the membrane can be determined by inspection of the physical object. For instance, when a clamped drum
is considered, the geometry of the membrane is described by the shape of the drum. Thus, it is critical to determine the
nature of any non-homogeneity. As it is pointed out in [8], the eigenvalues of particular membranes are often available
based on frequency measurements. Therefore, an approach for the recovery of the density from the available eigenvalues is
of practical importance.

Compared with the one-dimensional problem [9–12], inverse spectral results for the two-dimensional problem are
more difficult to establish. The literature on two-dimensional inverse spectral problems is not as much as that on the one-
dimensional case. The reader is referred to [13–16,8,1,17–19] for two-dimensional inverse spectral problems.

Of particular interest to this paper is themethod proposed by C.M.McCarthy [1] for the recovery of the symmetric density
on a rectangle from them lowest eigenvalues and the unknown density ρ is assumed to be a small perturbation around 1 in
L∞. The method in [1] is an extension of the one for the two-dimensional inverse Sturm–Liouville problem for the potential
on a rectangle with Dirichlet boundary conditions [15] while the method in [15] is an extension of the one for the one-
dimensional inverse Sturm–Liouville problem for the potential [20]. All the papers of [20,15,1] rely on the use of a finite
dimensional matrix inverse eigenvalue problem to approximate the continuous inverse problem. This kind of conversion is
usually given as motivation for work on the matrix inverse eigenvalue problem [21,22].

In [1], by expanding the function ρ − 1 with m Fourier-type functions and discretizing the differential equation with
Rayleigh–Ritz approach, the continuous inverse eigenvalue problem is converted to a matrix inverse eigenvalue problem
with m unknown parameters. When eigenvalues of (1) with ρ = 1 are all simple, the matrix inverse eigenvalue problem
is solved by forming an associated set of nonlinear equations and solving these by a fixed-point iterative approach. Then
an approximation to the unknown density ρ is constructed. When some eigenvalues of (1) with ρ = 1 are multiple, the
algorithm is modified. However, as pointed out in [1], the modification may fail since its success depends heavily on the
symmetric property of the eigenfunctions of (1) with ρ = 1, and additional spectral data, such as symmetry properties of
eigenfunctions, must then be specified in order to select the correct construction. Numerical results in [1] suggest that when
ρ −1 has compact support, expanding ρ −1 withm Fourier-type functions leads to some error near the boundary since the
Fourier-type functions do not have compact support.

The inverse problem is ill-posed, and it is hard to recover the coefficients from part of eigenvalues, so we only consider
the ρ that is a function around constant 1 as in [1]. To reduce the error near the boundary, in this paper we attempt to
approximate ρ by a piecewise constant and numerical experiments show that it is better than the Fourier series sometimes.
By using the piecewise constant function to approximate the density ρ and using the Rayleigh–Ritz approach to discretize
the differential equation, we get a matrix inverse eigenvalue problem, and approximate the original continuous inverse
eigenvalue problem by it. Then the piecewise constant approximation is obtained by solving the matrix inverse eigenvalue
problem. Thus far, most algorithms discussed in the literature for solving the continuous inverse eigenvalue problem are
developed under a prior assumption that a solution somewhat is known to exist. However, this piece of information usually
is not available in practice. Therefore, in our paper, we put forward a least squares problem and solve it by an iterative
method, and then the piecewise constant approximation to the density ρ is produced. Numerical results in Section 4 for
examples used in [1] show our method produces a good approximation to the unknown density ρ and for ρ − 1 with
compact support, the error near the boundarymay be reduced. Also, numerical results indicate that the sequence generated
by our method may converge to the correct approximation to the unknown density ρ in the case that multiple eigenvalues
of (1) with ρ = 1 occur while the success of the method in [1] depends on the symmetric property of the eigenfunctions.

The rest of this paper is organized as follows. In Section 2 the least squares formulation for the related matrix inverse
eigenvalue problem is presented. In Section 3 the details of recovery of the symmetric density function by using an iterative
method are given. Finally, Section 4 is devoted to reporting our numerical results, which show that the numerical values are
more accurate than that in [1] for some examples and the sequence generated by our method may converge to the correct
approximation to the unknown density in the case that multiple eigenvalues of (1) with ρ = 1 occur while in [1] it may be
difficult to select the correct construction without additional spectral data.

2. Least squares formulation for the inverse eigenvalue problem

Given the m lowest eigenvalues {λi}
m
i=1 of (1), we seek an approximation to ρ, which is assumed to be symmetric with

respect to the midlines of the rectangle R, and to be a small perturbation of ρ = 1 in L∞ as in [1]. The eigenvalues and
eigenfunctions for the base problemwith ρ = 1, which can be written down explicitly for the case of a rectangular domain,
play an important role in the recovery. Denote with {λ0

i , φ
0
i }

∞

i=0 the eigenpairs of (1) for the problemwith ρ = 1 and {φ0
i }

∞

i=1
are L2-orthonormal eigenfunctions. In [1], {λ0

i }
∞

i=1 and {φ0
i }

∞

i=1 shall be referred to as the base eigenvalues and the base
eigenfunctions, respectively, and they are given by

λ0
i = a2n2

i + m2
i (2)

and

φ0
i =

2
√
a

π
sin(anix) sin(miy), (3)
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