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a b s t r a c t

In this paper, a numerical analysis of two velocity–two pressure models for flows of solid
particles and fluids is presented. First, a formal exploitation of the weak formulation of
such models asserts that they are amenable to integration via projection methods. The
challenging issues in the algorithm development for these models are then documented
and suitable numerical methodologies for their remedy are devised. Subsequently, an al-
gorithm for the integration of the models of interest is proposed. This is a two-phase pro-
jection method on collocated grids that utilizes a fractional-step time-marching scheme.
It is further endowed with an interface detection-and-treatment methodology to properly
account for the stiffness induced by the presence of moving and deforming material inter-
faces. The efficiency and robustness of the proposed numerical method are assessed in a
series of numerical experiments that are delineated in the last part of this paper.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the course of the last decades, algorithm development and numerical simulation of two-phase flows of immiscible
mixtures has been the subject of numerous research efforts. The notable increase of interest in this particular research field
can be summarized in three aspects. To begin with, such flows are omnipresent in both technological applications and in
natural phenomena, so that their study is of profound importance and applicability. Secondly, numerical simulations are
well-adapted and have compelling advantages for the systematic study of the flows of interest. For example, the effects of
specific processes can be effortlessly isolated by simply ‘‘switching off’’ the terms that describe them in the governing equa-
tions. Further, detailed parametric studies, which allow for an holistic understanding of the mechanisms that drive these
flows, can be performed in relatively short times; moreover the extraction of flow features is straightforward. Thirdly, the
predictive capacity of numerical simulations is dependent on the accuracy of the algorithms employed for the integration
of the corresponding mathematical models. Consequently, the design and development of efficient and robust numerical
methods for the integration of the related mathematical models is fostered.

To date, the majority of studies have focused on the integration of the two-phase Navier–Stokes equations, which gov-
ern the motion of immiscible mixtures of fluids, such as water and air [1–4]. Besides the equations for the balance of mass
and linear momentum, appropriately weighted to account for the different viscosities and densities of the constituents, the
two-phase Navier–Stokes equations are also endowed with a transport equation that models the propagation of the ma-
terial interface. Typically, quantities such as the density and viscosity are discontinuous across such interfaces which, in
turn, introduces stiffness problems that have to be properly remedied. Therefore, the numerical treatment of the two-phase
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Navier–Stokes requires the combination of a ‘‘Navier–Stokes solver’’ with a methodology for the accurate computation of
the motion of the interface.

On the other hand, the modelling of immiscible and heterogeneous mixtures is based on the constitutive assumption
that the phases coexist in space, so that the introduction of the concept of the volume fraction is required. Typical examples
include, but are not limited to, flows of solid particles immersed in fluids and of fluids over and through porous media. For
themodelling of these flows, one has to employ two velocity–two pressuremodels, so that the dynamics of each constituent
are taken into consideration. As a result, each phase is assigned its own set of equations for the balance of mass and linear
momentum, with the latter being augmented to accommodate terms that model interactions between the two phases. For
more information about the derivation of two velocity–two pressure models, the axiomatic framework that they are based
on, and the mechanics of coexisting continua more generally we refer the reader to [5].

In recent years there has been an increasing interest in the algorithmdevelopment of two-velocity, two-pressuremodels;
see, for example, the recent discussions of [6,7] that focus on the numerical integration of such models for granular flows.
However, despite these efforts, relevant literature remains notably restrained and our understanding of the related numer-
ical analysis is rudimentary. Accordingly, available numerical results typically correspond to fully developed, steady-state
flows, [8–12].

In this paper, we are concerned with the development of projection methods for two velocity–two pressure models on
collocated grids. By using a particular two-phase flowmodel for flows of fluid-saturated granularmaterials as amodel of ref-
erence, we first formally demonstrate that this model is amenable to the numerical treatment via appropriately generalized
projectionmethods. Subsequently, we identify the challenging issues that emerge in the spatial and temporal discretization
of the governing equations and craft solutions for their remedy. Based on this analysis, we propose a two-phase generaliza-
tion of the classical Chorin–Temammethod, suitably tailored to the structure of the equations at hand. Following the earlier
work of [7], the proposed algorithm is coupled with a regularization method that, besides its ease of implementation, can
efficiently handle strong material interfaces with varying topology. In the last part of this study, the performance and effi-
cacy of the proposed algorithm are assessed via the numerical simulation of a Poiseuille and Couette flow of a simple fluid
over and through granular beds and of a transient flow of a simple fluid over two-dimensional dunes.

In viewof the dearth of relevant studies in the existing literature, the objective and novelty of the presentwork is twofold.
On the one hand, to systematically develop an efficient and robustmulti-phase projectionmethod that iswell-adapted to the
integration of two velocity–two pressuremodels. On the other hand, to devise a detailed ‘‘numerical guide’’ that collectively
identifies and addresses the challenging issues that arise in the numerical analysis of suchmodels that are currently not-well
understood. As such, the present study aims to perform a first step towards the development of a comprehensive numerical
analysis of this type of models. Our focus is here placed on the flowmodel of [13]; nevertheless, both the analysis presented
herein and the results extend to a large class of similar models such as, for example, the ones of [8,9,14] and others.

2. Notation and preliminaries

Before proceeding to the main body of this paper, we specify the notation and terminology that will be employed in
the following. Throughout this paper, Ω denotes a bounded and Lipschitz domain of R3 whereas n and τ designate the
unit vectors normal and tangential to ∂Ω , respectively. Further, ei, i = 1, . . . , 3 denotes the ith versor of the Cartesian
coordinate system, i.e. the set {e}3i=1 is the standard orthonormal basis of R3. Also, as usual, Cm(Ω), m ∈ Z+ stands for the
space of functions that havem continuous derivatives in Ω .

The space L2(Ω) stands for the space of square Lebesgue integrable functions in Ω , equipped with its usual norm,
∥f ∥H1(Ω) =


Ω

|f |2dx
1/2. Further, the Sobolev space H1(Ω) is defined as follows,

H1(Ω) =


f :


Ω

|f |2 + |∇f |2dx < ∞


, (1)

and is endowed with the norm ∥f ∥H1(Ω) =


Ω
|f |2dx

1/2
+


Ω
|∇f |2dx

1/2. Let C∞
c (Ω) denote the space of smooth

functions compactly supported in Ω . Then, H1
0 (Ω) ≡ C∞

c (Ω)
∥ ∥H1(Ω) , i.e. H1

0 (Ω) is defined as the closure of C∞
c (Ω) with

respect to the topology induced by the H1-norm.
Consider the space of smooth and compactly supported solenoidal vector fields in Ω , J(Ω). We define H(Ω) as the com-

pletion of J(Ω) with respect to the norm induced by the inner product,

⟨u, v⟩ =


Ω

∇u · ∇v dx.

Finally, fix 0 < T ≤ ∞. Presume that A(Ω) and B([0, T ]) are Banach spaces with norms ∥ ∥A(Ω) and ∥ ∥B([0,T ]),
respectively. The Bochner space B([0, T ] : A(Ω)) comprises functions f ∈ A(Ω) such that ∥f ∥A(Ω) ∈ B([0, T ]) and is
endowed with the norm ∥f ∥B([0,T ]:A(Ω)) = ∥∥f ∥A(Ω) ∥B([0,T ]).
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