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a b s t r a c t

In structural reliability, an important challenge is to reduce the number of calling the per-
formance function, especially a finite elementmodel in engineering problemwhich usually
involves complex computer codes and requires time-consuming computations. To solve
this problem, one of themetamodels, Kriging is then introduced as a surrogate for the orig-
inalmodel. Kriging presents interesting characteristics such as exact interpolation and a lo-
cal index of uncertainty on the prediction which can be used as an active learning method.
In this paper, a new learning function based on information entropy is proposed. The new
learning criterion can help select the next point effectively and add it to the design of ex-
periments to update the metamodel. Then it is applied in a new method constructed in
this paper which combines Kriging and Line Sampling to estimate the reliability of struc-
tures in a more efficient way. In the end, several examples including non-linearity, high
dimensionality and engineering problems are performed to demonstrate the efficiency of
the methods with the proposed learning function.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In structural reliability analysis, a fundamental problem is to compute the integral of joint probability density function
(PDF) of random variables in the failure domain, i.e. to solve the multifold probability integral defined as [1]

Pf =


G(x)≤0

f (x)dx (1)

where Pf is the failure probability of the structure. x = [x1, . . . , xn]T is a vector of random input variables such as loads,
environmental factors, material properties, and structural geometry and so on. The performance function G(x) characterizes
the response of the structure and G(x) ≤ 0 means the structure is a failure at the point x. The border between the failure
and safe domain is the limit state G(x) = 0. f (x) denotes the joint PDF of x.

It is difficult to evaluate Eq. (1) for general structures directly due to the time-consuming computation with identifying
G(x) and numerically performing the multi-dimensional integration of f (x) over the failure domain. Therefore, various
methods have been developed in order to solve the integral, among which Monte Carlo Simulation (MCS) [2,3] is one of
the most widely used methods for handling complex problems. However, it is time-demanding for engineering problems.
First and second order reliability methods (FORM, SORM) [4,5] approximate the failure probability based on the knowledge
of the most probable point (MPP, also known as design point), and require a significantly smaller number of performance
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function evaluations. But in practice they feature the same limitation: theMPP is difficult to search. Then somenovel variance
reduction techniques, such as Subset Simulation (SS) [6,7], Line Sampling (LS) [8,9] and Importance Sampling (IS) [10,11],
have been proposed to address the computational problems. The basic idea of IS is generating points around the MPP in the
vicinity of the limit state surface. SS computes the failure probability as a product of conditional probabilities, which can
be easily estimated by Markov Chain Monte Carlo (MCMC) simulation [12,13]. LS computes the failure probability based
on the optimal important direction which is from the origin of coordinate to the MPP in the standard normal space. These
techniques prove to be robust and require much fewer samples than MCS, and LS is especially excellent for high-dimension
and low failure probability problems. It is, however, still not practical in applying these methods on the reliability analysis
where the finite element models are involved in engineering problems.

As a result, we need a model to substitute the initial expensive model as the performance function in engineering prob-
lems. It is called metamodel with various kinds: Quadratic Response Surfaces [14], Polynomial Chaos [15], Kriging [16,17],
Neural Network [18], and Support Vector Machine [19,20], etc. In this paper, Kriging is employed. Kriging, developed by
Krige [21] and then developed by Matheron [22], is an exact interpolation method and a form of generalized linear regres-
sion for the formulation of an optimal estimator in a minimummean square error sense. Kriging metamodel is constructed
by a design of experiments (DoE) and then can provide not only the predicted response at any point, but also the local un-
certainty called Kriging variance on the response: the higher the variance, the less certain the prediction. So if a sample
point with higher variance is added to the DoE, the Kriging model can get more improvement. This process is called active
learning that means the Kriging model is updated by adding new points intelligently. Therefore, active learning functions
which determine whether the points are selected to add or not are proposed in these years. Expected Feasibility Function
(EFF), the first learning function proposed by Bichon in an efficient global reliability analysis method [16], aims at adding
new points with high Kriging variance in the vicinity of the limit state surface. Then a new learning function U is proposed
and first applied in the Active learning reliability method combining Kriging and Monte Carlo Simulation (AK-MCS) [23]
and later in the method called AK-IS for active learning and Kriging-based IS [24]. Antoine Dumasa et al. [25] proposed a
learning criterion, named as PBC based on the distribution of the prediction. This paper proposes a new learning function
H that originated from the information entropy theory and Kriging with this learning function can be applied in many reli-
ability methods such as MCS, IS, LS and so on. As LS is a very efficient reliability method, even for high-dimension and low
failure probability problems, a new active learning method combining Kriging and LS called AK-LS is constructed to offer
more choices for computing the structural reliability.

The paper is organized as follows. Section 2 recalls the basic theory of the Kriging method for the limit state function. In
Section 3, a new active learning function H is proposed and verified. Section 4 introduces a method combining LS method
and Kriging with the new active learning function. Several numerical and engineering examples including finite-element-
based reliability problems are computed to demonstrate the efficiency of the proposedmethod in Section 5. The paper ends
with conclusions in Section 6.

2. Basic theory about Kriging method

Kriging metamodel is an interpolation technique based on statistical theory, which consists of a parametric linear re-
gressionmodel and a nonparametric stochastic process. It needs a design of experiments to define its stochastic parameters
and then predictions of the response can be completed on any unknown point. Give an initial design of experiments (initial
DoE) X = [x1, x2, . . . , xN0 ], with xi ∈ Rn (i = 1, 2, . . . ,N0) the ith experiment, and G = [G(x1),G(x2), . . . ,G(xN0)], with
G(xi) ∈ R the corresponding response to X . The approximate relationship between any experiment x and the response G(x)
can be denoted as

Ĝ(x) = F(β, x) + z(x) = f T (x)β + z(x) (2)

where βT
=

β1, . . . , βp


is a regression coefficient vector. Similar to the polynomial built by response surface method,

f T (x) = [f1(x), f2(x), . . . , fp(x)]T makes a global simulation in design space. In the ordinary Kriging, F(β, x) is a scalar and
always taken as F(β, x) = β . So the estimated Ĝ(x) can be simplified as

Ĝ(x) = F(β, x) + z(x) = β + z(x).
Here z(x) is a stationary Gaussian process [26] and the statistic characteristics can be denoted as

E (z(x)) = 0 (3)

Var (z(x)) = σ 2
z (4)

Cov[Z(xi), Z(xj)] = σ 2
z R(xi, xj) (5)

where σ 2
z is the process variance, and xi, xj are discretional points from the whole samples X . R(xi, xj) is the correlation

function about xi and xj with a correlation parameter vector θ. There are several models to define R(xi, xj), and the broadly
used Gaussian correlative model is selected in the paper which is the best in application and can be formulated by

R(xi, xj) = exp
n

k=1


−θk


xki − xkj

δ
θk ≥ 0, 0 ≤ δ ≤ 2 (6)
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