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a b s t r a c t

In this work a meshless method based on the approximate particular solutions is applied
to the computation of fixed boundary tokamak equilibria using Grad–Shafranov (GS)
equation. The GS equation is solved for different choices of the right hand side of the
equation: (i)when it is not a function ofmagnetic flux (i.e., Solov’ev solutions), (ii)when it is
a linear function of magnetic flux, and (iii) when it is a nonlinear function of magnetic flux.
For all these cases the first order derivative term in the GS equation is transferred to the
right hand side such that the left hand side consists only the Laplace operator. This enables
us to use the Radial Basis Functions (RBFs) in the calculation of approximate particular
solutions. A linear combination of these particular solutions is taken as the solution of the
GS equation and the resulting system of algebraic equations is solved iteratively because of
the presence of the magnetic flux on the right hand side in all three choices. Furthermore,
we use least squares approach in solving the overdetermined systemof algebraic equations
which alleviates the problem of ill-conditioning to a certain extent. The numerical results
obtained using this method are in good agreement with the analytical solutions (where
available). We find that the method is convergent, accurate and easily applicable to the
irregular geometries due to its meshless character.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

TheMagnetohydrodynamic (MHD) equilibria in the tokamak are described by the Grad–Shafranov (GS) equation [1]. This
is in general a nonlinear elliptic partial differential equation derived from the ideal MHD equations. There are numerous
extensive works in the literature for solving GS equation for the fixed and free boundary problems in the tokamak using the
finite element, finite difference, spectral, boundary element and other mesh based methods [2–9]. However the work based
on meshless methods applied to the GS equation is very limited. Some of these works are given in [10–12]. The meshless
methods have the advantages that (i) they are comparatively easy to program, (ii) they do not require a mesh, and (iii) they
can be applied to any geometry without much difficulty.

The aim of the present work is to formulate and apply a meshless method based on the approximate particular solutions
for the computation of the fixed boundary tokamak equilibria. The governing equation consists of an axisymmetric operator
on the left hand side of an elliptic partial differential equation. Although the GS operator is linear, to find its particular
solution is very hard except for some cases when the right hand side is a combination of monomials or some other simple
function [13]. Furthermore, if the approximate particular solutions are obtained by approximating the right hand side by
radial basis functions (RBFs), then these particular solutions no longer remain purely radial functions, i.e., they contain both
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Fig. 1. (a) A torus showing flux surfaces (ψ = constant) on which B and J lie, (b) a schematic representation of domain and boundary on a poloidal
cross-section.

coordinates (x and y) instead of being a function of radial distance only. In this work we rearrange the GS equation such
that its left hand side consists of only the Laplace operator and the remaining term is transferred to the right hand side.
This allows the particular solutions to be purely RBFs. The requirement of particular solutions to be RBFs is because the RBF
interpolants possess certain important properties namely radial symmetry and invariance under translations, rotations, and
reflections [14].

The linear combination of such particular solutions (associated with each node) is used to express the solution of the GS
equation. It is noted that the fundamental solution which is needed for the calculation of homogeneous solution, as in the
method of fundamental solutions (MFS) [15,12,16], is no longer needed in the present method. The present method was
originally developed in [17] and named as MAPS (Method of Approximate Particular Solutions). We have applied it to the
present problem in a least squares sense. The least squares method helps to alleviate the ill-conditioning (which is inherent
in meshless methods) to a certain extent. The multiquadratic (MQ)-RBF has been used in the following calculations due to
its better performance among the other globally supported RBFs [18,19].

In Section 2, the GS equation is presented in a nondimensional form. In Section 3, the least squares method based on
the approximate particular solutions is presented to solve the GS equation numerically. In Section 4, the results are shown
corresponding to the three choices of right hand side of the GS equation: (a) when it is not a function of magnetic flux (Ψ )
(Solov’ev case), (b) when it is a linear function of Ψ , and (c) when it is a nonlinear function of Ψ . The conclusions are given
in Section 5.

2. The Grad–Shafranov equation

The Grad–Shafranov equation is derived from the steady state ideal MHD equations in cylindrical coordinates (R, Z, φ)
with the assumption of toroidal symmetry (∂/∂φ = 0) and static plasma (v = 0) and can be written as follows [2,9]:

−


R
∂

∂R


1
R
∂Ψ

∂R


+
∂2Ψ

∂Z2


= µ0R2 dp(Ψ )

dΨ
+ I(ψ)

dI(Ψ )
dΨ

≡ µ0RJφ (1)

where Jφ = toroidal component of the current density and µ0 = magnetic permeability of free space. The magnetic flux Ψ
in Eq. (1) is the poloidal flux Ψp normalized by 2π , i.e.,
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where B is the magnetic field, n is the unit normal to a surface element dsp as shown in Fig. 1(a). In Eq. (1) p (Ψ ) is the
pressure as a function of Ψ , I (Ψ ) is the poloidal current function defined by I (Ψ ) =


sp
J · ndsp where J is the current

density. The quantity Ψ ≡ Ψ (R, Z) gives the equilibrium profile of the plasma in the geometry under consideration.

Nondimensionalisation

The GS equation (Eq. (1)) can be nondimensionalized using: x = R/R0, y = Z/R0, ψ = Ψ /Ψ0, Bx = BR/
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equation can be written in the following nondimensional form:
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