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a  b  s  t  r  a  c  t

This paper presents estimates for the parameters included in long-term mixture and non-

mixture lifetime models, applied to analyze survival data when some individuals may

never experience the event of interest. We  consider the case where the lifetime data have

a  two-parameters exponentiated exponential distribution. The two-parameter exponenti-

ated exponential or the generalized exponential distribution is a particular member of the

exponentiated Weibull distribution introduced by [31]. Classical and Bayesian procedures

are used to get point and confidence intervals of the unknown parameters. We consider

a  general survival model where the scale, shape and cured fraction parameters of the

exponentiated exponential distribution depends on covariates.

© 2013 Elsevier Ireland Ltd. All rights reserved.

1.  Introduction

A long-term survivor mixture model, also known as standard
cure rate model, assumes that the studied population is
a mixture of susceptible individuals, who experience the
event of interest and non-susceptible individuals that will
never experience it. These individuals are not at risk with
respect to the event of interest and are considered immune,
non-susceptible or cured [28]. Different approaches, para-
metric and non-parametric, have been considered to model
the proportion of immunes and interested readers can refer,
for example, to Refs. [4,5,11,12,14–16,18,21,30,32,33,40]. Fol-
lowing [28], the standard cure rate model assumes that a
certain fraction p in the population is cured or never fail
with respect to the specific cause of death or failure, while
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the remaining (1 − p) fraction of the individuals is not cured,
leading to the survival function for the entire population
written as:

S(t) = p + (1 − p)S0(t), (1)

where p ∈ (0, 1) is the mixing parameter and S0(t) denotes a
proper survival function for the non-cured group in the pop-
ulation. Considering a random sample of lifetimes (ti, ıi, i = 1,
. . ., n), the contribution of the ith individual for the likelihood
function is:

Li = [f (ti)]
ıi [S (ti)]

1−ıi , (2)

where ıi is a censoring indicator variable, that is ıi = 1 for an
observed lifetime and ıi = 0 for a censored lifetime.
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From the mixture survival function, (1), the probability den-
sity function is obtained from f(ti) = − (d/dt)S(ti) and given by:

f (ti) = (1  − p) f0 (ti) , (3)

where f0 (ti) is the probability density function for the suscep-
tible individuals. Substitution of the mixture density (3) and
survival function (1) in the standard likelihood function (2)
yields the likelihood for the long-term survivor mixture model:

Li = [(1 − p) f0 (ti)]
ıi [p + (1 − p) S0 (ti)]

1−ıi . (4)

Thus, the log-likelihood considering all observations is
given by:

l = r log (1 − p) +
n∑
i=1

ıi log f0 (ti)

+
n∑
i=1

(1 − ıi) log [p + (1 − p) S0 (ti)] , (5)

where r =
∑n

i=1ıi is the number of uncensored observations.
Common choices for the survival function S0(t), in (1), are
the exponential and Weibull distributions. Ref. [34] investi-
gated the use of a generalized Fisher–Snedecor distribution as
baseline for S0 (t). The generalized Fisher–Snedecor distribu-
tion is a supermodel that includes the most popular survival
models as particular cases, such as the exponential, Weibull,
log-normal, among others. Ref. [43] considered the general-
ized log-gamma distribution for the mixture cure rate model in
the context of accelerated failure-time regression models. The
Gompertz distribution was considered by Ref. [19], while the
exponentiated Weibull and exponentiated exponential dis-
tributions were considered, respectively, by Refs. [6,23]. The
Conway–Maxwell Poisson cure rate model was proposed by
Ref. [35] as an alternative to the cure rate model discussed by
Ref. [44].

An alternative to a long-term survivor mixture model is
the long-term survivor non-mixture model suggested by Refs.
[42,41,26] which defines an asymptote for the cumulative
hazard and hence for the cure fraction. The survival function
for a non-mixture cure rate model is defined as:

S (t) = p1−S0(t), (6)

where, like in (1), p ∈ (0, 1) is the mixing parameter and
S0(t) denotes a proper survival function for the non-cured
group. Observe that if the probability of cure is large, then
the intrinsic survival function S (t) is large—S0(t) will be large
which implies in F0(t) = 1 − S0(t) small. Larger values of F0(t)
at a fixed time t imply lower values of S(t). The non-mixture
model (6) or the promotion time cure fraction has been used
by Refs. [27,26] to estimate the probability of cure fraction in
cancer lifetime data.

From (6), the survival and hazard function for the non-
mixture cure rate model can be written, respectively, as:

S (ti) = exp [log (p) F0 (ti)] (7)

and

h (ti) = − log (p) f0 (ti) . (8)

Since f(t) = h(t)S(t), the contribution of the ith individual for
the likelihood function is given by:

Li = h(ti)
ıi S (ti) (9)

that is:

Li = [− log (p) f0 (ti)]
ıi exp [log (p) F0 (ti)] . (10)

Considering a random sample of lifetimes (ti, ıi, i = 1, . . .,  n)
the log-likelihood is:

l = r log [− log (p)] +
n∑
i=1

ıi log f0 (ti) + log (p)

n∑
i=1

[1 − S0 (ti)] ,

(11)

where, as before, r =∑n

i=1ıi.
A Bayesian formulation of the non-mixture cure rate model

is given in Ref. [9]. A model which includes a standard mix-
ture model for cure rate was considered in Ref. [44]. Ref. [36]
extended the long-term survival model proposed by Ref. [9].

In this paper, considering the exponentiated exponential
distribution, we compare the performance of the mixture
and non-mixture cure fraction formulation when the frac-
tion p and the other parameters may vary by covariates. The
paper is organized as follows: in Section 2, we introduce the
likelihood function assuming an exponentiated exponential
distribution for the susceptible individuals; in Section 3, we
present a Bayesian analysis assuming the mixture and non-
mixture models in presence or not of covariates; in Section 4,
we present an application with randomized trials of two  dif-
ferent residential treatment programs aimed to reduce drug
abuse and, consequently, AIDS high-risk behavior; finally in
Section 5, we  introduce some comments and remarks.

2.  The  exponentiated  exponential
distribution  cure  model

Ref. [20] introduced the generalized exponential (GE) distribu-
tion, also known as exponentiated exponential distribution,
this distribution is a particular member of the exponentiated
Weibull distribution introduced by [31], whose probability den-
sity function is given by:

f0 (t | ˛, �) = ˛� exp (−�t) [1 − exp (−�t)]˛−1, (12)

where  ̨ > 0 and � > 0 are the shape and scale parameters,
respectively. For  ̨ = 1 we have the exponential distribution as
particular case. Similarly to a Weibull distribution, the hazard
function of an exponentiated exponential distribution could
be increasing, decreasing or constant depending on the shape
parameter  ̨ [22,25].

From (12), we have that the distribution and survival func-
tions can be written, respectively, as:

F0 (t | ˛, �) = [1 − exp (−�t)]˛ and S0 (t | ˛, �)

= 1 − [1 − exp (−�t)]˛. (13)
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