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a b s t r a c t

A new method based on elementary row operations for computing the outer inverse of
a given constant matrix is presented. When this method is applied to matrices of index
one, a new expression for the group inverse is derived. Through this expression, a more
efficient method for computing the group inverse of the square matrix A of order n with
rank r ≤ 0.725n is developed.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout we shall use the notation of [1,2]. Cn and Cm×n
r stand for the n-dimensional complex vector space and the set

of m × n matrices over complex field C with rank r , respectively. As always, the range, null space, and conjugate transpose
of a matrix A will be denoted by R(A),N(A), and A∗, respectively. Let A ∈ Cm×n

r , T be a subspace of Cn of dimension s ≤ r
and S be a subspace of Cm of dimensionm − s such that

AT ⊕ S = Cm. (1)
Then there exists a uniquematrix X such that XAX = X, R(X) = T , andN(X) = S. Thismatrix X is called the outer inverse, or
{2}-inverse, of Awith prescribed range T and null space S and denoted by A(2)

T ,S . This generalized inverse has many practical
applications [1,3–5].

In addition, suppose G ∈ Cn×m
s satisfies

R(G) = T and N(G) = S (2)
for the subspaces T and S in (1). Define A♯

= N−1A∗M for positive definite matrices M ∈ Cm×m and N ∈ Cn×n. For the case
when m = n, the smallest nonnegative integer l such that rank(Al) = rank(Al+1) is called the index of A and is denoted by
Ind(A). It is well-known that

A(2)
T ,S =



AĎ if G = A∗
;

AĎM,N if G = A♯
;

Ag ifm = n,G = Awith Ind(A) = 1;
AD ifm = n,G = Al with l ≥ ind(A);

A(−1)
(L) if R(G) = L and N(G) = L⊥

;

A(Ď)
(L) if R(G) = S and N(G) = S⊥.
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Thus, the outer inverse A(2)
T ,S provides a unified treatment for several generalized inverses, including the Moore–Penrose

inverse AĎ, the weighted Moore–Penrose inverse AĎM,N , the group inverse Ag , the Drazin inverse AD, the Bott–Duffin inverse
A(−1)

(L) , and the generalized Bott–Duffin inverse A(Ď)
(L) . The group inverse Ag is the special Drazin inverse when Ind(A) ≤ 1. For

the case when A is a non-singular square matrix, we have Ind(A) = 0 and Ag
= AĎ = A−1.

Many methods for the computation of A(2)
T ,S have been proposed over the past thirty years. The iterative methods can be

found in [6–10]. An algebraic perturbation method is given in [11]. The methods based on full-rank representation and QR
decomposition are proposed in [12,13]. The Gauss–Jordan-like eliminationmethods for the outer inverse have been recently
developed in the literature [14–16] which are direct extensions of those for theMoore–Penrose inverse [17–19] to the outer
inverse.

The algorithm proposed by Sheng, Chen, and Gong [14] for computing the outer inverse A(2)
T ,S starts from elementary row

operations on [GA | I] and the one of Sheng and Chen [16] begins with the elementary row and column operations on
GAG G
G 0


. (3)

While these methods provide ways of computing A(2)
T ,S , both involve the construction of auxiliary matrices containing GA

before elementary transformations can be applied. Therefore, not only these methods increase the computational costs by
constructing either GA as in [14] or GAG as in [16] but also they worsen the condition number of the problem. The method
in [15] starts with the elementary row operations on [G | I]. This approach is close to the one in [14] but is more stable and
faster as it does not directly involve the computation of GA.

The classical Gauss–Jordan elimination for the inverse of a nonsingularmatrix is themethod of choice for small problems
since it can be easily carried out ‘‘by hand’’. All the afore-mentionedmethods of elementary operations for the outer inverse
have the same advantage. But we need to be aware of the fact that these methods of elementary operations are not reduced
to the classical Gauss–Jordan eliminationmethod for the regular inverse when applied to a nonsingular matrix since in such
a case, the choice forG isA∗ andnone of them startswith the elementary rowoperations on [A | I] as the classical counterpart
does. A method using Gauss–Jordan elimination starts with [A | I] for the Moore–Penrose inverse was recently developed
in [20]. In this paper, we will propose an alternative method of elementary row operations for outer inverse by performing
row operations first on [G∗

| I], following the lines of [20]. Our approach is more like the one in [16] by working with a
bordered matrix and the outer inverse is read off from the computed result but there is no need for forming GAG. Moreover,
the new approach will lead us to a new expression for the group inverse when applied to matrices of index one. Based on
this expression, a more efficient method for computing the group inverse of matrices with r ≤ 0.725n is developed.

2. The newmethod for the outer inverses

We start our discussion by applying elementary row operations on [G∗
| I] and this results in [B | P] where B is in

the reduced row echelon form. Let P be the product of all the elementary matrices representing these elementary row
operations. We can write

P[G∗
| I] = [PG∗

| P] = [B | P].

Denote the matrix B by

B =


B1
0


where B1 ∈ C s×n

s .

Next, we apply elementary row operations on [B∗
| I]. Due to the fact that B is in the reduced row echelon form, B∗ is

transformed by elementary row operations to

C =


Is 0
0 0


(4)

or equivalently there exists a nonsingular matrix Q ∈ Cn×n such that

Q ∗
[B∗

| I] = [C | Q ∗
].

Therefore, we have

PG∗
= B =


B1
0


and Q ∗B∗

= C =


Is 0
0 0


. (5)

Theorem 1. Let A ∈ Cm×n
r , T be a subspace of Cn of dimension s ≤ r and S be a subspace of Cm of dimension m − s such

that (1) is satisfied. Assume that G ∈ Cn×m
s satisfies (2). P and Q are two nonsingular matrices such that (5) is satisfied with
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