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a b s t r a c t

We investigate discrete kinetic models in the fluid dynamic limit described by the Euler
system and the Navier–Stokes correction obtained by the Chapman–Enskog procedure.
We show why reliable ‘‘small’’ systems can be expected only for small Mach numbers and
derive a calculus for designing models for given Prandtl numbers.
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1. Introduction

The Boltzmann equation provides amathematical description of gas flows on amesoscopic level and is useful in a number
of applications like the modeling of microflows. Due to the complexity of the equation (the Boltzmann collision operator
requires the calculation of a five-dimensional integral to be evaluated pointwise in phase space) it is hard to construct
efficient numerical schemes based on classical numerical discretization concepts. One way out is the use of Monte Carlo
methods. This approach is not discussed here. Another way is the derivation of highly reduced discrete kinetic models.

Concepts for discrete kineticmodels on regular lattices have been proposed and investigated by a number of authors. The
paper [1] provides an attempt to discretize the collision operator on a Cartesian grid. However, the order of consistency is
extremely low (see the investigations in [2,3]). Another possibility is the construction of classes ofmodelswhich as aminimal
requirement satisfy the correct physical conservation laws [4,5]. However, we do not know of any results confirming their
use as a numerical tool. An attempt to construct discrete collision dynamics which in a sense are optimally adapted to a
given lattice have been introduced in [6] as the so-called Lattice Group Models. They turn out to be applicable to produce
reliable numerical results in a number of test cases [7,8].

Discrete kineticmodels are also used as a tool formacroscopic simulation. A commonly applied technique is present in the
Lattice Boltzmann Systems [9,10]which have been proven to be consistentwith theNavier–Stokes equations. At present there
seem to be two separate scientific communities with not much overlap applying kinetic schemes either from the view point
of rarefied gas dynamics or of fluid dynamics. The present paper is intended to overcome this gap. Thismeans the following. A
link between computational Fluid Dynamics and computational Rarefied Gas Dynamics is provided by the observation that
some of the favorite relaxation models of Lattice Boltzmann Theory can be interpreted as (linearizations of) two-particle
collision operators. With this we have a common basis for the simulation of both regimes. The Lattice Boltzmann models
(e.g. D2Q9, D3Q27) are too rough to be applied well into the rarefied regimes which require larger velocity systems. For the
complete simulation of the whole transition regime we need to couple models of different sizes. There is a need for a whole
hierarchy of models which are compatible in the sense that in the fluid dynamic limit they exhibit the same macroscopic
behavior. That is, flow parameters like the Prandtl number are to be the same. To this end we require a method specifying
flowproperties for givenmodels. This is one focus of the present paper. In detailwe proceed as follows. In Section 2wedefine
two-particle collisions on general discrete grids and introduce an appropriate representation for nonlinear and linearized
collision operators. Furthermore we establish the concept of the pseudo-inverse. In Section 3 we investigate the moment
system and give arguments why discrete models on (small) grids can only be expected to yield useful results in the small
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Mach number limit. Applying the classical Chapman–Enskog procedure we derive the Navier–Stokes system. Section 4 is
devoted to 2D velocity models with rotational symmetry. We derive systems comparable to the single relaxation time (SRT)
and to themultiple relaxation time (MRT) models used in Lattice Boltzmann schemes. A few numerical examples in Section 5
illustrate the use of the nine-velocity system in the context of collisional dynamics.

2. Discrete kinetic models: mathematical framework

2.1. The nonlinear collision operator

Let I be a finite index set, |I| = N and define V = {vi, i ∈ I} ⊂ Rd (d ∈ {2, 3}) as a set of N pairwise different points
(‘‘velocities’’) in Rd. Suppose given a quadruple α = (i, j, k, l) ∈ I. We call a transition

(vi, vj) ↔ (vk, vl) (2.1)

between velocity pairs a two-particle collision. The collision is called momentum and energy conserving (short: an elastic
collision), if

vi + vj = vk + vl, (2.2)

|vi|2 + |vj|2 = |vk|2 + |vl|2. (2.3)

The following result is well known and elementary.

Lemma 2.1. The collision is elastic iff the polygon connecting vi, vk, vj, vl is a rectangle in Rd.

Related to the collision is the nonlinear elementary collision operator Jα : RV
→ RV ,

(Jα f )m =

fkfl − fifj form ∈ {i, j}
fifj − fkfl form ∈ {k, l}
0 for m ∈ I \ {i, j, k, l}

(2.4)

i.e. Jα f = (fkfl − fifj) · sα , with the α-index vector sα defined by

sα = ei + ej − ek − el, (2.5)

with em being them-th canonical unit vector in RV . In the following, A ⊂ I4 denotes the set of all quadruples α = (i, j, k, l)
corresponding to elastic collisions. Writing elements v of V componentwise in the form v = (vx, vy) for d = 2 resp.
v = (vx, vy, vz) for d = 3, we define the moment vectorsmi ∈ RN , i = 0, . . . , d + 1 by

m0 = 1 = (1, . . . , 1)T , (2.6)

m1 = vx = (vx, v ∈ V)T , (2.7)

m2 = vy = (vy, v ∈ V)T , (2.8)

m3 = vz = (vz, v ∈ V)T (if d = 3), (2.9)

md+1 = 0.5v2 = (0.5|v|2, v ∈ V)T , (2.10)

the matrix

M := (mi, i = 0, . . . , d + 1) ∈ RN×(d+2), (2.11)

and the subspace

M = span(mi, i = 0, . . . , d + 1) ⊆ RV . (2.12)

An immediate consequence of the conservation laws (2.2) and (2.3) is

Lemma 2.2. α ∈ A ⇔ MT sα = 0 ⇔ sα ∈ M⊥.

Definition 2.3. (a) A subset A0 ⊆ A is called regular, if

span(sα, α ∈ A0) = M⊥. (2.13)

(b) A collision operator J : RV
→ RV

J :=


α∈A

πα Jα (2.14)

with collision frequencies πα ≥ 0 is called regular if the set AJ := {α ∈ A : πα > 0} is regular.
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