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a b s t r a c t

By using a front-tracking approach for moving boundaries, whose surface properties are
solved in terms of an immersed-boundary method, the dynamics of bubble transport
in a microchannel is computationally studied. This methodology allows the simulation
of a liquid–gas system with a realistically large density ratio. In accordance with the
pressure-driven inlet/outlet condition generally encountered in experiments, a projection
method enforcing incompressibility is implemented as the solution scheme. The approach
is then applied to two unique problems of bubble dynamics in microchannels. The first
is concerned with bubble transport in a channel with sudden contraction. A bubble slug
is placed in the microchannel embedded with a pair of side blocks. In the flow driven
by pressure difference, the bubble slug would pass through or be stuck by the blocks,
depending on the variations of Reynolds number andWeber number. With such variations
of key parameters, furthermore, the bubble slug may deform in different manners. In
the second part, the ascending dynamics of multiple bubbles is investigated, specifically
regarding their interactions. It is found that in the confined space of small scale, the
behaviors of bubbles are constrained by the walls, and not much interaction between
bubbles is observable particularly when the flow is dominated by an imposed pressure
difference. If the channel is sufficiently wide, for a pair of rising bubbles which are lined
in a row, substantial interactions between the bubbles and the walls are observed. By
changing the dimensionless parameters of rising bubbles and the channel width, variations
in bubble shape, rising trajectory, and the wakes behind bubbles are discussed based on
such essential mechanisms as the interplay of vortices and nonuniform pressure field.
Moreover, a third bubble is inserted at the center and the flow structure is analyzed.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Transportation of bubbles is critical in various technologies such as mechanical fabrication, processes in chemical
engineering, and applications of micro/nano fluidic devices that are being largely extended to biological and medical
treatments. Examples of specific interest are given by the removal issue of CO2 bubbles that are created at the anode of
micro direct methanol fuel cells (µDMFC) and migrated to the diffusion layer, and transport of fluids in microreactors used
in chemical industry. Although themotion of a bubble has been studied broadly in a large domain where buoyancy provides
a key driving force both by experiment [1–3] and simulation [4–6], it is not considered to a similar extent in confined systems
where the surface-to-volume ratio is essentially large and interfacial tension becomes dominant. In this regard, the work is
purported to simulate and analyze the transport of bubbles in a small channel, which is an elemental geometry generically
observed in micro devices.
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The front-tracking method adopted for the simulation was originally developed by Unverdi and Tryggvason [7] for
multiphase flows and has been applied also to other moving boundary problems such as solidification [8] and flame
propagation [9,10]. In view of its effective treatment and handling for the front which may accurately track the motions
of interfaces without significant loss of mass conservation of different phases, the method has been applied successfully
for simulation of multiphase flows with substantial deformation of interfaces [11–13]. The surface properties are treated
by means of the immersed-boundary method [14], by which the singular sources of interfaces are spread to neighboring
volumetric grid points. This methodology allows simulation of a liquid–gas system with realistically large density ratio.
In the two-dimensional (2D) Cartesian coordinates, multiple bubbles or droplets can be simulated in the same domain
without substantially increasing effort. The tool is thus preferable for numerical analysis of two-phase flow dynamics in
a channel where multiple bubbles are considered. The solution scheme is based on the projection method [15]; but since it
is generically fit for a Dirichlet boundary condition of velocity, a special treatment for pressure-driven inlet condition needs
to be implemented, to account for the operation usually encountered in real situations.

The methodology is then used to analyze two crucial problems of bubble transport in microchannels that have not been
well understood, i.e., passage of a bubble through obstructed areas and interactions between bubbles in confined space.
The former is concerned with bubble transport in a microchannel with sudden contraction when the Reynolds number
is not very large. The second problem regards the dynamics of multiple bubbles rising in parallel; understanding of their
interactions is limited not only for confined space but also in an open domain that is usually considered. Through the studies
based on the simple configurations, the behaviors of bubbles carried in devices of small scale shall be further comprehended
and controlled.

2. Numerical methodology

The approach of front tracking [7] and its application in microfluidics are described in the following.

2.1. Front tracking method

The Navier–Stokes equations are solved for both gas and liquid phases in a unified domain:

∂(ρV)

∂t
+ ∇ · (ρVV) = −∇P + ρg + ∇ · µeff


∇V + ∇VT 

+


1s

σeffκnδ(r − rf )da (1)

where V, ρ, and P are the velocity, density, and pressure respectively normalized by the characteristic bubble velocity Vc ,
liquid densityρℓ, and the dynamic pressureρℓV 2

c , and t is time normalized by Lc/Vc , where Lc is the characteristic length. The
effective viscosity µeff is the reciprocal of Reynolds number, Re = ρℓVcLc/µℓ, where µℓ is the liquid viscosity. The effective
surface tension coefficient σeff is the reciprocal of Weber number,We = ρℓV 2

c Lc/σ , where σ is the surface tension of liquid.
In Eq. (1) the surface tension is added as a delta function integrated locally over the interface separating immiscible fluids
within unit volume in order to render a singular force exerted by the interface, and is calculated over the entire bubble
surface. The notations for volume and surface are for 3D systems but we have used their 2D versions, i.e. surface and line.
Here κ is twice themean curvature,n the outwardly directed unit normal vector at the bubble surface, and r the space vector
with the subscript f designating the interface.

The procedure to solve the Navier–Stokes equations follows the projection method described in [15], with

(ρV)n+1
− (ρV)∗

1t
= −∇hPn+1 (2)

where the unprojected mass flux is defined as

(ρV)∗ = (ρV)n − 1t


∇h · (ρVV) + ρg + ∇h · µeff

∇V + ∇VT 

+


1s

σeffκnδ(r − rf )da
n

. (3)

Taking divergence on both sides (divided by ρ) yields the Poisson equation for pressure,

∇h ·


1

ρn+1
∇hPn+1


=

∇h · V∗
− ∇h · Vn+1

1t
. (4)

Here the subscript h and the superscript n respectively refer to the discretizations in space and time. The divergence of
velocity at n + 1 in Eq. (4) is taken as zero in order to ensure the condition of incompressibility. Furthermore, the singular
term due to a surface force in Eq. (3) is smeared out of the interface onto finite neighboring grid points by using the
immersed-boundary method of Peskin [14]. A cosine weighting function is used to spread the interfacial properties toward
surrounding cells, based on a Lagrangian–Eulerian treatment of moving front markers and stationary grid points. To carry
out the geometric conservation of the Dirac delta function, i.e.,


+∞

−∞
δ(x− xf )dx = 1, a discrete form is established to satisfy
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