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a b s t r a c t

The primary purpose of this paper is to provide an in-depth analysis of a number
of structurally different methods to numerically evaluate European compound option
prices under Heston’s stochastic volatility dynamics. Therefore, we first outline several
approaches that can be used to price these type of options in the Hestonmodel: a modified
sparse grid method, a fractional fast Fourier transform technique, a (semi-)analytical
valuation formula using Green’s function of logarithmic spot and volatility and a Monte
Carlo simulation. Then we compare the methods on a theoretical basis and report on
their numerical properties with respect to computational times and accuracy. One key
element of our analysis is that the analyzedmethods are extended to incorporate piecewise
time-dependent model parameters, which allows for a more realistic compound option
pricing. The results in the numerical analysis section are important for practitioners in the
financial industry to identify under whichmodel prerequisites (for instance, Hestonmodel
where Feller condition is fulfilled or not, Heston model with piecewise time-dependent
parameters or with stochastic interest rates) it is preferable to use and which of the
available numerical methods.

Crown Copyright© 2014 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The compound option goes back to the seminal paper of Black and Scholes [1]. Not only did they derived their famous
pricing formulas for vanilla European call and put options, but they also considered how to evaluate the equity of a company
that has couponbonds outstanding. They argued that the equity canbe viewedas a ‘‘compoundoption’’ because the equity ‘‘is
an option on an option on · · · an option on the firm’’. It was Geske [2]who first developed a closed-form solution for the price
of a vanilla European call on a European call. It turns out that a wide variety of important problems are closely related to the
valuation of compound options. Some examples include pricing American puts in [3] and pricing options on portfolios in [4].

It is well known that derivative securities are notwell approximatedwhen it is assumed that the underlying assets follow
the geometric Brownian motion process proposed by Black and Scholes [1]. In particular, since the payoff of the compound
option is a function of the future underlying vanilla option price – and vanilla option prices show in the market that they do
not have constant implied volatility – the compound option price itself not only depends on future spot prices, but also on
future levels of volatility. There have been numerous efforts to develop alternative asset return models that are capable of
capturing the leptokurtic features found in financial market data, and subsequently to use these models to develop option
prices that accurately reflect the volatility smiles and skews found in market traded options. One way to develop option
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pricing models that are capable of generating such behavior is to allow the volatility to evolve stochastically, in particular
using the square-root process introduced byHeston [5]. In this paper, we incorporate this feature into the price of compound
options.

In the case of compound options under geometric Brownianmotion dynamics, there exist ‘‘almost’’ explicit integral-form
solutions. However, in situations involvingmore general dynamics (such as stochastic volatility), either explicit solutions do
not exist or the integrals become difficult to evaluate. In this paper we propose a number of different approaches that can
be used to price compound options under [5] stochastic volatility dynamics. A partial differential equation (PDE) approach
is implemented using a modified sparse grid (SG) method. This approach provides an efficient and flexible way to compare
prices of compound options. More importantly, it is not only restricted to European-type options but can also include
American type or other types of exotic options. We also implement a fractional fast Fourier transform technique, a (semi-)
analytic valuation formula using Green’s function of the logarithmic spot and volatility and a Monte Carlo simulation. Then
we compare the methods on a theoretical basis and report on their numerical properties with respect to computational
times and accuracy.

The comparison of computational runtimes of the methods is carried out using parallel computing to obtain the highest
quality level of the solutions and to reflect the increased use of clusters in the financial engineering sector. The results in
our numerical analysis section are important for practitioners in the financial industry, since in a practical environment
the application of fast computational approaches is crucial. Therefore, in this situation it is relevant to identify under which
model prerequisites (for instance, theHestonmodelwhere the Feller condition is fulfilled, theHestonmodelwhere the Feller
condition is not fulfilled, the Hestonmodel with piecewise time-dependent parameters or the Hestonmodel with stochastic
interest rates) it is preferable to use which of the available numerical methods. Our paper provides such comprehensive
discussions and so serves a practical purpose.

The remainder of the paper is structured as follows. In Section 2, we outline the framework of the Heston [5] model,
based on which we develop and compare a number of different methods to price compound options. A modified sparse
grid approach is discussed in Section 3 to numerically evaluate the partial differential equation that describes the mother
option prices. In Section 4 we describe a fractional fast Fourier transform technique that makes use of the representation of
the compound option price in terms of its exercise probabilities. Thirdly, we study a (semi-)analytic valuation formula for
European compound options by means of Green’s function in Section 5. A Monte Carlo simulation is considered in Section 6
as an alternative pricing method before the efficiency of these approaches is analyzed through a number of numerical tests
in Section 7. Finally, we draw some conclusions in Section 8.

2. The Heston framework and notation

Following the setting in [5], the dynamics for the share price S under the risk neutral measure and its variance v are
governed by the system of stochastic differential equations

dSt = (r − q)Stdt +
√

vtSdZ1
t , (1)

dvt = κ(θ − vt)dt + σ
√

vtdZ2
t . (2)

Here, the variables r and q denote the rate of interest and the dividend yield, respectively. Their difference is the
instantaneous drift of the stock price returns under the risk neutral measure. The stochastic process {St}t≥0 followed by
the stock price is equivalent to a geometric Brownianmotion, but its volatility contains an additional source of randomness.
Therefore, the process {vt}t≥0 represents the instantaneous variance of the spot price with initial variance level v0 > 0. The
positive parameters κ , θ and σ denote the speed of mean-reversion, the level of mean-reversion and the volatility of the
variance of the Cox–Ingersoll–Ross process. Additionally, the two Wiener processes {Z1

t }t≥0 and {Z2
t }t≥0 are correlated

⟨dZ1
t dZ

2
t ⟩ = ρdt,

with a constant rate ρ, taking on values between−1 and 1.Within the scope of thismodel, we investigate various numerical
methods for pricing European compound options.

A compound option is an option with another option as its underlying quantity. Due to this nested optionality, the
compound option is characterized by two exercise decisions: the intermediate one of the ‘mother option’ and the final
one of the ‘daughter option’. When exercising the mother option the holder may decide to receive the underlying option
for a fixed strike price paid in advance. That decision depends on the price of the daughter option at that future time and
if the right to buy it for a fixed price is advantageous compared to the current market price of the underlying option. In
turn, conditional on this prior decision, the second exercise is that of the underlying option at a later point in time. In the
following we will deal with a standard compound call option, which is structured out of two European plain vanilla call
options. Similarly, one can define a call on put, put on call, and put on put.

Suppose that a compound option expires at some future date TM with the strike price KM and the daughter option on
which it is contingent, expires at a later time TD(> TM)with the strike priceKD. Under geometric Brownianmotion dynamics,
the price of such a European call on a European callM(S, t) (or call on call in short) at time t may be expressed as

M(S, t) = EQ e−r(TM−t)(DBS(STM , TM) − KM)+|St = S

, (3)
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