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a b s t r a c t

This work proposes a semi-analytical method for simulation of the acoustic response
of multipole eccentered sources in a fluid-filled borehole. Assuming a geometry that is
invariant with respect to the azimuthal and vertical directions, the solution in frequency
domain is expressed in terms of a Fourier series and a Fourier integral. The proposed semi-
analytical method builds upon the idea of separating singularities from the smooth part of
the integrand when performing the inverse Fourier transform. The singular part is treated
analytically using existing inversion formulae, while the regular part is treated with a FFT
technique. As a result, a simple and effective method that can be used for simulating and
understanding the main physical principles occurring in borehole-eccentered sonic mea-
surements is obtained. Numerical results verify the proposed method and illustrate its ad-
vantages.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Sonic logging instruments are routinely used to assess the main mechanical properties of the subsurface, enabling
estimation of the amount and type of hydrocarbons present in a reservoir. However, in actual borehole logging conditions,
sonic logging measurements are often difficult to interpret, and they may produce a miscalculation in the hydrocarbon
estimation. A well-known situation in which sonic measurements are challenging to interpret is when the logging
instrument is located at a nonzero distance from the center of the borehole, the so-called borehole-eccenteredmeasurements
(cf. [1,2]). To facilitate interpretation of borehole-eccentered measurements, it is necessary to develop effective numerical
simulation methods in frequency domain, which provide direct information about the dispersion and velocities of the wave
propagation phenomena.

The numerical codes developed for this purpose – most of them based on finite-element discretizations – need to be
constantly improved and verified. A powerful and simple test is to benchmark these codes with results that can be obtained
by a completely different method, the latter being as analytical as possible. Analytical codes are also used to postprocess
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in real-time acquired sonic waveforms, which enable corrections on the trajectory of the so-called logging-while-drilling
(LWD) instruments.

A simpleway to obtain analytical representations of solutions is to assumegeometric invariance in twoof the three spatial
dimensions. Here, we assume a concentric borehole model where the vertical and azimuthal directions remain invariant.
In this case, the wavefield produced by a (time-harmonic) point source can be represented by an inverse Fourier integral
in terms of the axial coordinate, and a Fourier series in terms of the azimuthal coordinate (cf. [3]). The main computational
difficulty is to deal with the singularities of the integrand function in the Fourier inversion, whichmakes impossible a direct
application of a FFT technique or any other conventional numerical integration method. Indeed, those singularities are not
integrable in the classical (L1 or Riemann) sense. Therefore, the Fourier inversion only has ameaning in a distributional sense.
So far, two numerical techniques have been used to compute this last Fourier inversion integral. One technique is known as
the real axis integration (RAI) method, introduced by Rosenbaum [4] and Tsang & Rader [5]. The other technique employs a
deformed integration path in the complex plane and the most common reference to this method is the work of Kurkjian [6].

The RAI method [5,7] is conceptually easy to apply, but it is a method adapted to recover the solution in time-domain
rather than in frequency-domain. Basically, by adding a sufficiently large imaginary part in the frequency variable, the
singularities of the integrand function are shifted away from the real axis towards the complex plane. This allows to perform
a direct integration over the real axis with a FFT technique, at the expense of introducing a solution defined over a complex
path of the frequency domain rather than the traditional real frequency domain space. This prevents us from directly
studying frequency domain features that are routinely analyzed in borehole acoustics. For that purpose, one would need
to perform additional Fourier transforms, which can be cumbersome and prone to numerical errors. Nonetheless, the RAI
method can be applied to several logging scenarios (see [8] or [9]).

On the other hand, the method that uses Cauchy theory [6] is well adapted to recover the frequency-domain solution,
but it can be difficult to handle because it involves several integrals in the complex plane. Basically, the Fourier inversion
integral is computed as the sumof residues given by the singularities, plus integrals over both sides of the brunch cutswhere
the integrated function is non-analytic. A slight modification to this technique, in which the residues are computed using a
Laurent series expansion, can be found in the recent article [10].

In this paper we use a different approach, which is at the same time conceptually simple and adapted to recover the
frequency-domain solution. Since the integrand has non-integrable singularities, it must be regarded as a tempered distribu-
tion (the space of distributions where the Fourier transform is well-defined). Then, by isolating the singularities, we split the
integrated function into a non-integrable part (but still a tempered distribution) plus an integrable part in the L1(R) sense.
The non-integrable part is treated analytically using conventional Fourier transform formulae, while the integrable part is
treated numericallywith a FFT technique over the real axis (no complex integration paths are used). The idea of decomposing
the inverse Fourier transform into analytic andnumeric counterparts iswidely used inmany communities, particularlywhen
evaluating Green’s functions for applications in electrical engineering, mechanical engineering, geophysics and boundary
elements (cf. [11–14]). Our case is particularly challenging because the map of singularities is complicated: we have several
of them, each one depends nonlinearly upon the frequency, and most of them have cut-off frequencies.

We apply this approach to compute the (time-harmonic) acoustic response of a fluid-filled borehole due to multipole
eccentered excitations, including some extreme situations where the sources are very close to the borehole wall. We verify
our technique against the classical results of Kurkjian [6] and the latest finite-element approach proposed in [1].

This paper is organized as follows. First, we describe the model problem to be solved. Then, we derive the mathematical
formulation of our semi-analytical method. Finally, we present some benchmarks and challenging numerical results fol-
lowed by the main conclusions. This paper also contains an Appendix that describes explicitly the radial stress in Fourier
domain.

2. Model problem

Using cylindrical coordinates (r, θ, z), we consider a fluid with sound velocity cf > 0 and density ρf > 0 filling the bore-
holeΩf := {(r, θ, z) : r < R}. An isotropic elastic solid of density ρs > 0 and Lamé coefficients λ,µ > 0 is surrounding the
borehole in a regionΩs := {(r, θ, z) : r > R}. The domains are invariant under rotation and translation in the z-direction.
We want to analyze the pressure response in the fluid, due to a time-harmonic point source excitation. Single point source
is characterized by its angular frequency ω > 0 and placed for convenience at (rs, 0, 0), where 0 < rs < R (see Fig. 1). More
complicated types of sources like eccentered monopoles, dipoles or quadrupoles are obtained by a simple superposition
technique (see Section 3.4 or cf. [15]).

The characteristic wavenumbers are denoted by kf = ω/cf for the fluid, and kp = ω(ρs/(λ + 2µ))1/2 together with
ks = ω(ρs/µ)

1/2 for the compressional and shear wavenumber of the solid, respectively.
The pressure response in the fluid and the displacement field response in the elastic solid are represented by p =

p(r, θ, z;ω) and u = u(r, θ, z;ω) = urer + uθeθ + uzez , respectively, where {er , eθ , ez} denotes the set of canonical
vectors in cylindrical coordinates. The corresponding set of partial derivatives is denoted by {∂r , ∂θ , ∂z}.

Given an amplitude A ∈ C of the source, the pressure behavior in fluid domain is governed by the Helmholtz equation:1p + k2f p = −
A
r
δ(r − rs)δ(θ)δ(z) inΩf ,

∂rp = ρfω
2ur over r = R,

(1)
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