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a b s t r a c t

We introduce a discontinuous Galerkin method with Lagrange multiplier (DGLM) to ap-
proximate the solution to the hyperbolic conservation laws with boundary conditions. La-
grange multipliers are introduced on the edge/face of the element via weak divergence
(Wang and Ye, 2014). The final global system has reduced numbers of unknowns of the
standard DGmethods. Numerical fluxes from finite volume/differencemethod are not con-
sidered. For the time discretization, backward Euler difference method is used. Stability of
the approximate solution is proved in energy norm. Discontinuity of the solution is allowed
in the error analysis. Local error estimates of O(hr+ 1

2 +∆t)with Pr (E) elements (r ≥
d+1
2 )

are derived, where h and ∆t are the maximum diameter of the elements and time steps,
respectively, and d is the dimension of the spatial domain. The high order approximation
is obtained under an appropriate condition on the stabilizing parameter. It is shown that
the method preserves the property of the local mass conservation. An explanation on algo-
rithmic aspects is given.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following initial boundary value problem for the nonlinear hyperbolic conservation laws:

∂tu + ∇ · F(u) = 0 inΩ × J, (1.1)

u(·, 0) = uo inΩ, (1.2)
u = g in ∂Ω × J, (1.3)

where Ω ⊂ Rd is a bounded domain with d = 1, 2, or 3 and J = (0, T ] for T > 0. We assume that the data g belongs to
L2(∂Ω), uo belongs to L2(Ω), and the flux F belongs to (L∞(Ω))d. The boundary condition in (1.1)–(1.3) has to be understood
in a specific sense. For general flux F and in the context of entropy solutions, (1.1)–(1.3) has been first analyzed in the BV
framework in [1]. The notion of entropy solution given there has been extended to the L∞ setting in [2,3].

In this paper, we consider (1.1)–(1.3) in the L2 setting and develop a discontinuous Galerkin method with Lagrange
multiplier (DGLM) to approximate the solution to the problem. We formulate a weak form by using locally defined weak
divergence [4]. We introduce the Lagrange multipliers on each element. The approximate solution communicates only with
the Lagrange multipliers at its edges/faces and it is solvable on each element in terms of the Lagrange multipliers. The
discretized system is of block diagonal for the element unknowns and the reduced global system has block structure which
is easily computable in parallel. Since the Lagrangemultipliers are defined on the edge/faces only and single-valued on every
edge/face, the final global system of the DGLM has fewer numbers of coupled unknowns than the usual DG methods.
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For the timediscretization,weuse backward Euler differencemethod. Stability of the approximate solution is thenproved
in the energy norm. It is shown that the method preserves local mass conservation on each element. Under a reasonable
assumption on the regularity of the solution while discontinuity of the solution is allowed, we obtain the high order
approximation with an appropriate choice of the stabilizing parameter. Numerical fluxes from the finite volume/difference
method (FVM/FDM) are not considered. It is noted that the weak solutions of (1.1)–(1.3) produce a gap on the boundary
between the data and the solution, which is usually given in implicit form [5]. Applying the DGLM with the stabilizing
parameter sufficiently large, one can make the gap small enough.

Over the few decades, DG methods have been used widely in many fields with several appealing properties, even
though the solvers can be expensive due to the number of unknowns. Examples of these schemes include the Bassi–Rebay
method [6], the Local Discontinuous Galerkin (LDG) [7,8] methods, the Oden–Babuška–Baumann (OBB–DG) [9] method,
and interior penalty Galerkin methods [10]. Many useful variants of the DG methods have been also developed to reduce
the number of unknowns of the usual DG method. Examples include Coupling DG using mortar finite elements [11–13],
Multiscale DG [14–17], and Hybridizable DG [18–20].

The DGLMmethod is a discontinuous Galerkinmethod having reduced numbers of unknowns. It applies the DGmethod-
ology to discretize the differential equation together with the introduction of the Lagrange multipliers on each element.

Recently, in [4], a weak Galerkin mixed finite element method was introduced together with the definition of the weak
divergence to approximate the solution to the second order elliptic problems. There, theweak divergencewas approximated
via mixed finite elements.

On the other hand, the Lagrange multiplier has been introduced through the interface of the subdomains via domain
decomposition method for coupling DG elements for the linear elliptic [11], for nonlinear parabolic [12], and for linear
advection–diffusion–reaction problems [13]. There, the solutions were assumed to be smooth belonging to H

3
2 +ϵ(Ω) in the

error analysis.
Hybridizable DG (HDG) methods have been developed for convection diffusion equations in [19,20]. Extensive studies to

diverse problems such asNavier–Stokes and compressible/incompressible Euler equations have been alsomadebyCockburn
et al. (See [18] and the references cited therein for details.) In those methods, approximate traces were introduced with
appropriate choices of numerical fluxes from the FVM/FDM. However, to the best knowledge of the author, the error analysis
was given only for the elliptic problems.

Multiscale DG methods have been developed in [14–17]. They have reduced numbers of unknowns of the DG methods.
They use the solution space of the local problems as the approximate spaces.

In this paper, we develop a DGLM method by introducing a Lagrange multiplier on the edge/face of the element via
weak divergence to approximate the solution to the nonlinear hyperbolic conservation laws. We here note that the idea
of using Lagrange multipliers in conjunction with domain decomposition was first shown in the works of B. Fraeijs de
Veubeke [21]. We use the approximate spaces consisting of discontinuous piecewise polynomials as usual DG methods.
We allow the discontinuities of the solution in the error analysis and obtain the local error estimates of O(hr+ 1

2 +1t)with
Pr(E) elements (r ≥

d+1
2 ), where h and 1t are the maximum diameter of the elements and time steps, respectively, and

d is the dimension of the spatial domain. The high order approximation is obtained under an appropriate condition on the
stabilizing parameter. To the best knowledge of the author, the error analysis of high order approximation for the nonlinear
hyperbolic conservation laws allowing discontinuities of the solutions, this is the first result.

Concerning the stability and convergence of numerical schemes for conservation laws, most work were done for Cauchy
problems. For smooth solutions of nonlinear conservation laws, under a restrictive time step1t < γ h

4
3 for some constant

γ for high order element r ≥ 2, a priori error estimates of O(hr+ 1
2 + (1t)2) for the second order explicit Runge–Kutta

DGmethod, were obtained for general monotone numerical fluxes. Also, error estimates of O(hr+1
+ (1t)2)were obtained

for upwind numerical fluxes [22]. Recently, L2-norm stability for the Cauchy problem of the scalar conservation laws and a
priori error estimates for smooth solutions of scalar nonlinear conservation laws were obtained for the third order explicit
Runge–Kutta DGmethods. Quasi-optimal order for general monotone numerical fluxes and optimal order for upwind fluxes
were obtained, for r ≥ 1, under the standard CFL condition1t ≤ γ h [23].

For nonsmooth solutions of nonlinear conservation laws, a cell entropy inequality for the semidiscrete DG method for
the square entropy was proven [24], which implies that the numerical solutions, if convergent, will converge to an entropy
solution to the Cauchy problem of the scalar conservation laws. An error estimate of O(h1/4) in the L1(Ω)-norm for the
P0 elements for a monotone finite volume scheme was proven [25]. For higher order Pr elements, an error estimate with
additional shock capturing terms to the method was also shown [25]. The result was improved to O(h1/2) for the explicit
Lax–Friedrichs scheme [26]. There have been works on the a posteriori error estimates [27].

For initial boundary value problems for the nonlinear conservation laws, shock-capturing streamline-diffusion DG
methods and the finite volumemethods were considered in [28,29]. L∞(L∞) boundedness and convergence of DG solutions
were studied there. In [30,5], stable high order finite difference schemes and the entropy stable finite difference schemes
were introduced. Problem of imposing stable boundary conditions on systems of conservation laws was also addressed.

The paper is organized as follows. In the next section we introduce some notations. In Section 3, we consider the steady
state problem. We formulate the weak form for the DGLM. We establish equivalence between the weak formulation of the
DGLM and the original problem (1.1)–(1.3). In Section 4, we introduce the DGLM and prove the stability of the approximate
solution. We then show that the DGLM preserves the property of the local mass conservation. In Section 5, we study the
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