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a b s t r a c t

In this article, a finite difference/finite element algorithm, which is based on a finite dif-
ference approximation in time direction and finite element method in spatial direction,
is presented and discussed to cast about for the numerical solutions of a time-fractional
fourth-order reaction–diffusion problem with a nonlinear reaction term. To avoid the use
of higher-order elements, the original problem with spatial fourth-order derivative need
to be changed into a second-order coupled system by introducing an intermediate variable
σ = ∆u. Then the fully discrete finite element scheme is formulated by using a finite differ-
ence approximation for time fractional and integer derivatives and finite element method
in spatial direction. The unconditionally stable result in the norm, which just depends on
initial value and source item, is derived. Some a priori estimates of L2-norm with optimal
order of convergenceO(∆2−α

t +hm+1), where∆t and h are time step length and spacemesh
parameter, respectively, are obtained. To confirm the theoretical analysis, some numerical
results are provided by our method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The problems of fractional partial differential equations (FPDEs) have attracted a lot of attention. As we all know, based
on the different position of fractional derivatives, FPDEs may be divided into three types including FPDEs with time, spatial
and space–time fractional derivatives. In virtue of the difficulty for looking for the exact solutions of FPDEs, more and more
scholars try to seek the numerical solutions by different numerical methods. These numerical methods mainly cover finite
element (FE) methods [1–13], mixed finite element (MFE) methods [14,15], finite difference (FD) methods [16–38], finite
volume (element)methods [25,39,40], (local) discontinuous Galerkin (L)DGmethods [41–43], spectralmethods [44–49] and
so on.

Lin and Xu [46], Zhang and Xu [47], Lin et al. [48], and Zeng et al. [49] studied some spectral approximations for the
time-fractional diffusion equation, time-fractional water wave model, the fractional Cable equation, Riesz space fractional
reaction–diffusion equation, respectively. Baleanu et al. [16,44] presented some Laguerre spectral algorithms for fractional
differential equations. Liu et al. [39], Zhuang [25], and Cheng [40] discussed some finite volume (element) methods for
different fractional problems. Qiu et al. [41] proposed the nodal DGmethods for 2D fractional diffusion equations, Deng and
Hesthaven [42], Wei and He [43] solved some fractional differential equations by using LDG methods.
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So far, finite difference (FD)methods for solving fractional differential equations have beenwidely proposed and analyzed
by many scholars. Yuste and Quintana-Murillo [17], Quintana-Murillo and Yuste [18,19], Chen et al. [24], Chen et al. [26],
Sousa [28–30], Lin et al. [27], Huang et al. [37], Wang et al. [34], Wang and Wang [35], Li and Zeng [31], Li and Ding [36],
Zhang et al. [33], and Gao and Sun [32] studied some FD schemes for the fractional (advection) diffusion or diffusion-wave
equations. In [16], Baleanu et al. presented a central difference scheme for solving fractional optimal control problems.
In [22], Meerschaert and Tadjeran solved two-sided space-FPDEs by using FD approximations. Atangana and Baleanu[20]
proposed two FD schemes for fractional parabolic equations. Hu and Zhang [50] numerically solved fourth-order fractional
diffusion-wave and subdiffusion systems by applying FD methods. Vong and Wang [38] discussed a high order compact
FD scheme for time for fractional Fokker–Planck equations. Tadjeran et al. [21] proposed a second-order accurate FD
scheme for the 1D fractional diffusion equations and Tadjeran and Meerschaert [23] considered the 2D case. Baeumera
and Meerschaert [51] constructed a second-order Crank–Nicolson scheme, using a variant of the Grünwald FD formula for
tempered fractional derivatives combined with a Richardson extrapolation. In [52] Chen and Deng proposed a second-order
FDmethod for 2D two-sided space fractional convection diffusion equation. Recently, Sousa and Li [53] presented aweighted
FD scheme for space fractional super-diffusion equation by introducing a second order approximation for the fractional
Riemann–Liouville derivative of orderα, 1 < α ≤ 2. Based on the idea of weighted and shifted Grünwald difference (WSGD)
operator, Tian et al. [54] proposed some second and third order approximations for Riemann–Liouville fractional derivatives
for solving spatial fractional diffusion equations. Based on the idea ofWSGDoperator,Wang andVong [55] proposed compact
FD schemes for the modified time sub-diffusion equation with Riemann–Liouville fractional derivative and the temporal
Caputo fractional diffusion-wave equation. Compared to schemes proposed previously, the temporal accuracy order of their
schemes equals two. Following the idea of the WSGD operators [54,55] and using the equivalence of Caputo derivative
and Riemann–Liouville derivative based on some regularity assumptions, Ji and Sun [56] presented a high-order compact
difference scheme, in which the third-order accuracy formula was constructed for approximating Caputo time-fractional
derivative. Gao et al. [57] achieved FD schemes with the global time second-order numerical accuracy, which does not
depend on the values of α (0 < α < 1).

Finite element (FE) methods, which have been increasingly concerned by more andmore people, are a kind of important
numerical methods. In [3], Li et al. analyzed and discussed FE methods for nonlinear FPDEs with subdiffusion and
superdiffusion. Zhao and Li [4] solved the time–space fractional telegraph equation by using FD/FE approximations. In [10],
Li and Xu proposed a finite central difference/FE approximations with time second order convergence rate for 1D Caputo
time-FPDE. Ford et al. [7] considered a FE method for time FPDEs, and proved the existence and uniqueness of the solutions
by using the Lax–Milgram lemma. In [1], Zhang et al. studied the FE approximation combined with FD method for a 2D
modified fractional diffusion equation. Jin et al. [12] considered semidiscrete Galerkin FEmethod and lumpedmass Galerkin
FE method for the homogeneous time-fractional diffusion equation, and obtained optimal error estimates with respect to
the regularity of the solution. Jin et al. [13] studied two fully discrete FE schemes for fractional diffusion and diffusion-wave
equations covering a Caputo fractional derivative in time, in which they established optimal error estimates with respect to
the regularity of the initial data. In [58], Jin et al. considered a diffusion equationwithmulti-term time-fractional derivatives
by using the Galerkin FE method. Bu et al. [8] solved 2D Riesz space fractional diffusion equations by using Galerkin FE
method. Ma et al. [5] discussed the moving FE method for spatial FPDEs. Jiang and Ma [6] analyzed the results of a priori
errors and calculated somenumerical results based on somehigh-order elements for time-FPDEs. In [9], Li et al. developed FE
methods for fractionalMaxwell’s equations. In [11], Zeng et al. used FEmethod combinedwith FD approximation for solving
the time-fractional subdiffusion equation. In [14,15], Liu et al. proposed and analyzed two different MFE methods for two
classes of linear FPDEs, respectively. Fromagreat deal of literatures,we clearly see that FEmethods have beenused to look for
the numerical solutions of FPDEs, especially they are applied to solving time FPDEswith second order spatial derivatives. But
we can find from the current literatures that there are few studies on FE methods for solving time FPDEs with fourth-order
spatial derivatives. Recently, Liu et al. [15] studied a linear time fractional fourth-order diffusion equation without reaction
term by using FE method. The studied time fractional problem only covers a time fractional derivative, and the a priori
estimates are arrived at based onmathematical induction. At the same time, we can find that the obtained time convergence
rate in the theoretical analysis is only first-orderO(∆t). However, we know that FEmethods for solving the fractional fourth-
order nonlinear problem with both time fractional and integer derivatives have been not found in the literatures.

In this article, our target is to present a FD/FEmethod to solve a nonlinear time-fractional fourth-order reaction–diffusion
equation with first-order integer derivative in the time direction

∂u
∂t

−
∂α1u
∂tα

− 1u + ∆2u = f (u) + g(x, t), (x, t) ∈ Ω × J, (1.1)

with boundary condition

u(x, t) = 1u(x, t) = 0, (x, t) ∈ ∂Ω × J̄, (1.2)

and initial condition

u(x, 0) = u0(x), x ∈ Ω, (1.3)

where ∆ is the Laplacian operator, Ω ⊂ Rd(d ≤ 2) and J = (0, T ] are a bounded convex polygonal domain with Lipschitz
continuous boundary ∂Ω and the time interval with 0 < T < ∞, respectively. ∂α1u

∂tα is an anomalous sub-diffusion term,
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