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a b s t r a c t

A new asymptotically exact a posteriori error estimator is developed for first-order div
least-squares (LS) finite element methods. Let (uh , σh) be LS approximate solution for
(u , σ = −A∇u). Then, E = ∥A−1/2(σh + A∇uh)∥0 is asymptotically exact a posteriori
error estimator for ∥A1/2

∇(u − uh)∥0 or ∥A−1/2(σ − σh)∥0 depending on the order of ap-
proximate spaces for σ and u. For E to be asymptotically exact for ∥A1/2

∇(u − uh)∥0, we
require higher order approximation property for σ, and vice versa. When both A∇u and
σ are approximated in the same order of accuracy, the estimator becomes an equivalent
error estimator for both errors. The underlying mesh is only required to be shape regular,
i.e., it does not require quasi-uniform mesh nor any special structure for the underlying
meshes. Confirming numerical results are provided and the performance of the estimator
is explored for other choice of spaces for (uh , σh).

Published by Elsevier Ltd.

1. Introduction

The purpose of this paper is to introduce new, straightforward a posteriori error estimators for the least-squares (LS)
finite element method for second order self-adjoint elliptic partial differential equations proposed in [1,2]. In these papers,
the second-order equations are transformed into a system of first-order by introducing a new variable (flux) σ = −A∇u.
Least-squares methods based on the first-order system lead to a minimization problem, and the resulting algebraic equa-
tions involve a symmetric and positive definite matrix. One of the advantages of LS approaches is that it does not require
inf–sup condition [3,4]. As a result, one can choose any conforming finite element spaces as approximate spaces. However, as
was explained in [5], optimal rate of convergence for the flux in L2-norm cannot be obtained without adding the redundant
curl equation to the first-order system if the standard continuous piecewise polynomial spaces are used to approximate the
dual variable σ. On the other hand, with H(div) conforming spaces (such as the Raviart–Thomas (RT) spaces[6]) for the dual
variable σ, optimal rate of convergence is achieved for least-squares finite element methods [7]. Bochev and Gunzburger
also noted the advantages of using RT spaces over the standard continuous piecewise polynomial spaces when a locally con-
servative approximation is essential [5,8]. With this as motivation, we will employ such approximation spaces in this paper.
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First-order LS methods approximate the primary variable u and dual variables σ = −A∇u simultaneously. In general,
lowest order approximation spaces are used, i.e. piecewise linear polynomial spaces for u and RT0 for σ. However, this
leads to approximation of the primary variable with O(h2), while the dual variables σ are approximated with O(h). Hence,
it is natural to consider different approximation spaces. Indeed, the error estimate in [7] indicates that using the lowest
piecewise polynomial space for u and RT1 for the dual variable approximate both variables with O(h2). This motivates us to
use different pair of approximations spaces and obtain a posteriori error estimates.

One of the advantages of div LS methods is that the LS functional can be used as an a posteriori error estimator for the
natural energy norm. Recently, a modified version of the LS functional, where weight coefficients are introduced to scale the
respective residuals, is proposed as a new a posteriori error estimator for these methods in the flux variable [9]. Our esti-
mator uses only one term in the LS functional and the estimator turns out to be asymptotically exact with a certain choices
of approximation spaces. Our estimator is of the following form:

E(D) = ∥A−1/2(σh + A∇uh)∥0,D,

where (uh, σh) is the LS solution for (u, σ = −A∇u) and D ⊆ Ω is the region of interest. Briefly, when A∇u is approximated
in higher order approximate spaces, then the estimator is asymptotically exact for ∥A−1/2(σ − σh)∥0,D and when σ is ap-
proximated in higher order, then the estimate is asymptotically exact for ∥A1/2

∇(u − uh)∥0,D. When both A∇u and σ are
approximated in the same order of approximate spaces, then the estimator is equivalent to the error under a mild assump-
tion. Note that one of the advantages of LS methods is that they do not require the inf–sup condition. We use this advantage
to choose appropriate approximation spaces for the primary function u and flux variable σ. We will provide a detailed pre-
sentation in Section 4. In our numerical experiments in Section 5, we take D = Ω , and D = τ where τ is a single element.

Recently, discontinuous Petrov Galerkin (DPG) method is proposed by Demkowicz and Gopalakrishnan [10,11]. Similar
to LS approach, the method minimizes a residual of the governing equations in a certain norm. The DPG method has the
possibility to locally compute a test space that is close to optimal. It would be interesting topic to modify the a posteriori
error estimators developed in this paper for DPF method. We refer the interested readers to [12–18] and references therein
for the DPG method and its applications to various problems.

The paper is organized as follows: Section 2 introduces mathematical equations for second-order scalar elliptic partial
differential equations; the resulting div least-squares formulation for those equation is then described. In Section 3, we
prescribe the finite element spaces and describe the basic properties of the corresponding least-squares approximate
solutions. In Section 4, we propose a natural, asymptotically exact a posteriori error estimator for the flux variable σ and
discuss the properties of the error estimator for different degree pairs of (uh, σh). Also, we consider the case when the
estimator is reliable and efficient undermild assumption. Finally, in Section 5we provide numerical results that confirm the
preceding analysis and discuss the usefulness of the estimator when asymptotic exactness does not hold.

2. Problem formulation

Let Hs(Ω) denote the Sobolev space of order s defined on Ω . For s = 0,Hs(Ω) coincides with L2(Ω). We shall use the
spaces

V = H1
0 (Ω) = {u ∈ H1(Ω) : u = 0 on ∂Ω},

W = H(div) = {σ ∈ (L2(Ω))n : ∇ · σ ∈ L2(Ω)},

with norms ∥u∥2
1 = (u, u) + (∇u, ∇u) and ∥σ∥

2
H(div) = (∇ · σ, ∇ · σ) + (σ, σ).

Let Ω be a convex polygonal/polyhedral domain in Rn, n = 2, 3, with boundary ∂Ω . Consider

−∇ · A∇u + cu = f in Ω,
u = 0 on ∂Ω,

(2.1)

where A = (aij) is uniformly symmetric positive definite, and aij, c and f are smooth functions. We assume the following a
priori estimate:

∥u∥2+δ ≤ C∥f ∥δ, (2.2)

for some δ > 0.
By introducing a new variable σ = −A∇u ∈ W, we transform the original problem into a system of first-order

σ + A∇u = 0 in Ω,

∇ · σ + c u = f in Ω,

u = 0 on ∂Ω.

(2.3)

Then, the corresponding least-squares method for the system (2.3) is: Find u ∈ V , σ ∈ W such that

b(u, σ; v, q) ≡ (∇ · σ + c u, ∇ · q + c v) +

A−1(σ + A∇u), q + A∇v


= (f , ∇ · q + c v), (2.4)

for all v ∈ V , q ∈ W.
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