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a b s t r a c t

The aim of this paper is two-fold. First, we propose an efficient implementation of the
continuous time waveform relaxation (WR) method based on block Krylov subspaces.
Second, we compare this new WR–Krylov implementation against Krylov subspace
methods combined with the shift and invert (SAI) technique. Some analysis and numerical
experiments are presented. Since the WR–Krylov and SAI–Krylov methods build up the
solution simultaneously for thewhole time interval and there is no time stepping involved,
both methods can be seen as iterative across-time methods. The key difference between
these methods and standard time integration methods is that their accuracy is not directly
related to the time step size.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

An important sub-task frequently arising in the numerical solution of partial differential equations (PDEs) is the solution
of the following initial value problem (IVP):

y′(t) = −Ay(t), y(0) = v, t ∈ [0, T ], A ∈ Rn×n. (1)

Here A is typically very large and sparse. Note that (1) is equivalent to the problem of computing the action of the matrix
exponential [1,2]:

y(t) = exp(−tA)v, t ∈ [0, T ]. (2)

Krylov subspace methods have been successfully used for the evaluation of the matrix exponential and for the numerical
solution of various time dependent problems since the late 80s. We mention in chronological order some early pa-
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pers [3–10]. For a more recent work see the surveys in [11] and in corresponding chapters of [2,12]. These methods are
based on a projection of the original IVP (1) onto the Krylov subspace

Km(A, w) = span(w, Aw, A2w, . . . , Am−1w),

where usually w = v or w = Av holds. A significant part of the computational work in Krylov subspace methods is spent
for building up a basis of Km(A, w), which is usually done by the Arnoldi or Lanczos process [13,14]. The process computes
the columns v1, v2, . . . , vm of Vm ∈ Rn×m which form an orthonormal basis of Km(A, w) and v1 = w/∥w∥. The matrix Vm
satisfies the so-called Arnoldi decomposition [13,14], namely,

AVm = Vm+1Hm+1,m = VmHm,m + vm+1hm+1,meTm, Rm
∋ em = (0, . . . , 0, 1)T ,

where Hm+1,m = V T
m+1AVm ∈ R(m+1)×m and Hm,m = V T

mAVm ∈ Rm×m are upper Hessenberg and hm+1,m is the only nonzero
entry in the last row of Hm+1,m. Furthermore, if the Krylov subspace method converges successfully then for somem ≪ n it
holds

AVm ≈ VmHm,m,

i.e., the colspan of Vm is an approximate invariant subspace of A.
An attractive feature of themethod is that in some situations it suffices to build up just a single Krylov basis for thewhole

time interval of interest t ∈ [0, T ]. Indeed, with w = v an approximate solution ym(t) to problem (1) can be computed as

y(t) = exp(−tA)v = exp(−tA)Vmβe1 ≈ Vm exp(−tHm,m)βe1  
ym(t)

, t ∈ [0, T ], (3)

where β = ∥w∥ and Rm
∋ e1 = (1, 0, . . . , 0)T . The approximation ym in (3) should satisfy

∥y(t) − ym(t)∥ 6 tolerance, t ∈ [0, T ],

which can be checked in practice by some error estimates, for example, with the help of the exponential residual defined
as [15–17]

rm(t) ≡ −Aym(t) − y′

m(t). (4)

The property of having a single Krylov basis for the whole time interval makes the methods computationally efficient. In
some cases this property can be extended [18] to a more general IVP

y′(t) = −Ay(t) + g(t), y(0) = v, t ∈ [0, T ], A ∈ Rn×n (5)

where g : [0, T ] → Rn is a given function. Furthermore, this property allows one to regard the Krylov subspace methods
applied in this setting as, to some extent, time stepping freemethods.

Remark 1. Here we use the term ‘‘time stepping free’’ to indicate that the accuracy does not depend on a time step 1t , as
is the case for the standard time integration solvers such as Runge–Kutta or multistep methods. One should emphasize that
this independence on the time step is partial, i.e., the efficiency does depend on the length of the time interval (typically,
the smaller T , the smaller Krylov dimensionm suffices [19,9]).

If A is close to a symmetric positive definite matrix with a stiff spectrum,1 convergence of Krylov subspace methods can
be slow. In this case the performance can often be dramatically improved with rational Krylov subspace methods [22,12], in
particular by switching to the shift-and-invert (SAI) Krylov subspaceK((I+γ A)−1, w) [23,24], where γ > 0 is a parameter
related to T . The price for the faster convergence is that in these methods a system with the matrix I + γ A has to be solved
at each Krylov step.

Another useful property of the Krylov subspace methods is that they can be applied to solve (1) iteratively. More
specifically, assume we have an approximation yk(t) ≈ y(t) for which the residual rk(t), defined by (4), is known (here we
intentionally changed the subindex fromm to k). Then a better approximation can be obtained by the following iteration:

(a) find an approximate solution ξk(t) of

ξ ′(t) = −Aξ(t) + rk(t),
ξ(0) = 0, (6)

(b) update yk+1(t) = yk(t) + ξk(t). (7)

Clearly, if the correction problem (6) is solved exactly then the iteration converges to the exact solution y(t) after one step.
One possible option is to solve (6) by a Krylov subspace method: at each iteration k, a number m of Krylov iterations are
applied to solve (6) approximately. In fact this can be seen as an efficient restarting procedure for the Krylov subspace
methods [15,17]. See also related work on Krylov subspace methods and restarting [25–28,12].

1 Following [20, p. 36], by a matrix with a stiff spectrumwe understand a matrix A such that implicit time integrators performmuch better for y′
= −Ay

than explicit ones. For a more formal definition of stiffness see [21].
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