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In this paper we address the minimum cost perfect matching problem with conflict pair constraints

(MCPMPC). Given an undirected graph G with a cost associated with each edge and a conflict set of pairs of

edges, the MCPMPC is to find a perfect matching with the lowest total cost such that no more than one

edge is selected from each pair in the conflict set. MCPMPC is known to be strongly NP-hard. We present

additional complexity results and identify new polynomially solvable cases for the general MCPMPC.

Several heuristic algorithms and lower bounding schemes are presented. The proposed algorithms are

tested on randomly generated instances. Encouraging experimental results are also reported.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A matching M in an undirected graph G is defined as a set of
edges such that no two edges of M are incident on the same node.
The matching problem and its several variations are well studied
in the combinatorial optimization literature. Some variations of
the matching problem such as the maximum cardinality matching

problem (MCMP) and the minimum cost perfect matching problem

(MCPMP) are polynomially solvable while variations such as the
quadratic assignment problem (QAP) and the assignment problem

with budget constraints (APBC) are NP-hard. For a thorough review
on the bipartite matching problem and its variations, we refer to
the book by Burkard et al. [1].

Another variation of the matching problem is the minimum cost

perfect matching problem with conflict pair constraints (MCPMPC)
introduced by Darmann et al. [2]. To the best of our knowledge,
there are no other published papers discussing the MCPMPC. In
addition to an undirected graph G with edge costs, the definition of
MCPMPC uses a conflict set, which consists of edge pairs that are
incompatible in a feasible solution. These edge pairs are called
conflict pairs and they can alternatively be represented by a conflict

graph Ĝ, in which the nodes correspond to edges of G that are part of
the conflict pairs and each edge of Ĝ represents a conflict pair [3].
Since the conflict pairs result in binary disjunctive constraints, the
MCPMPC can be used in the applications of matching problems
where incompatibilities exist between some pairs of edges. Also
the MCPMPC arises as a subproblem when solving the quadratic

bottleneck assignment problem (QBAP) [4], which is a generalization
of the bandwidth minimization problem in matrices and graphs [5].

It is proved by Darmann et al. [2] that the MCPMPC is strongly
NP-hard on a general graph G even if the conflict graph is a collection
of single edges. In this paper we continue exploring complexity
results for the MCPMPC. We show that when the conflict graph is
arbitrary but the original graph G is a collection of disjoint 4-cycles,
then the problem is also NP-hard. Various polynomially solvable
cases are then identified by restricting the structures of G and Ĝ.

Since the MCPMPC can be formulated as an MCPMP with
additional constraints, any algorithm available to solve such
problems can be used directly to solve the MCPMPC, as well.
Some such references include [6,7] consider the special case when
G is bipartite. However, these algorithms are not good at handling
a large number of additional constraints and therefore in this
paper, we investigate other approaches to solve the MCPMPC. We
have five heuristic algorithms including a frequency guided tabu
search algorithm and a genetic mutation guided tabu search
algorithm, both make use of a general purpose mixed integer
linear programming (MILP) solver in each enhanced search
iterations. These two heuristics are shown to be computationally
promising and similar ideas can easily be incorporated in tabu

search based heuristics for other combinatorial optimization

problems. Lower bounding approaches for the MCPMPC are also

considered by using formulation transformation, Lagrangian

relaxation (LR), and linear programming (LP) relaxation, respec-

tively. Finally, the proposed heuristics and lower bounding

schemes are tested on randomly generated instances and report

the experimental results.
The rest of the paper is organized as follows. In Section 2 we

give two integer programming formulations of MCPMPC, prove
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ruonanz@sfu.ca (R. Zhang), apunnen@sfu.ca (A.P. Punnen).

Computers & Operations Research 40 (2013) 920–930

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2012.10.022
dx.doi.org/10.1016/j.cor.2012.10.022
dx.doi.org/10.1016/j.cor.2012.10.022
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2012.10.022&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2012.10.022&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2012.10.022&domain=pdf
mailto:ytoncan@gsu.edu.tr
mailto:annie.zhang@coe.ubc.ca
mailto:ruonanz@sfu.ca
mailto:apunnen@sfu.ca
dx.doi.org/10.1016/j.cor.2012.10.022
dx.doi.org/10.1016/j.cor.2012.10.022


new complexity results, and present new polynomially solvable
special cases. Heuristics and lower bounding schemes for the
MCPMPC are presented in Section 3, followed by the computa-
tional results in Section 4. Finally, concluding remarks are given in
Section 5.

2. Complexity and polynomially solvable cases

Let G¼ ðV ,EÞ be an undirected graph such that 9V9¼ n and
9E9¼m. For each edge eAE, a cost ce is defined. A conflict set

PDffe,f g : e,f AE,ea f g is also given and elements of P are called
conflict pairs. Let M be the family of all perfect matchings in G.
The incidence vector x¼ ðx1,x2, . . . ,xmÞ of a perfect matching M is
defined as

xe ¼
1 if eAM,

0 otherwise:

(

Thus a matching is completely represented by its incidence
vector. Let F(M) be the convex hull of incidence vectors of
MAM. Then the MCPMPC can be formulated as the following
integer linear programming (ILP) problem:

min z¼
X
eAE

cexe

s:t:

xAFðMÞ,
xeþxf r1 for fe,f gAP, ð1Þ

xeAf0,1g for eAE: ð2Þ

Constraints (1) enforce that no edge pair in a feasible perfect
matching can be a conflict pair. In other words, if fe,f g is a conflict
pair then at most one of edges e or f can appear in a matching. The
conflict set P can also be represented conveniently as a conflict

graph Ĝ ¼ ðV̂ ,ÊÞ, where V̂ ¼ E and ðe,f ÞA Ê if and only if fe,f gAP.
In fact, it is not necessary to choose V̂ ¼ E. Let

En
¼ fe : eAE and e is in some conflict pair of Pg:

Then we can choose the node set of Ĝ as En since if V̂ ¼ E, then
nodes in Ĝ corresponding to edges in E�En are isolated nodes in Ĝ

and dropping them does not affect the problem definition.
Further, any super set of En can also be chosen as V̂ . This
observation is convenient in defining conflict graphs in some
situations.

The MCPMPC can also be formulated as a quadratic minimum

cost perfect matching problem (QMCPMP) where a cost aef is used
for the edge-pair (e,f). Define

aef ¼

ce if e¼ f ,

C if fe,f gAP,

0 otherwise,

8><
>:

where C is a large number. Then the QMCPMP formulation of
MCPMPC is given by

min z¼
X
eAE

X
f AE

ea f

aef xexf þ
X
eAE

aeexe

s:t:

xAFðMÞ,
xeAf0,1g for eAE:

As mentioned in Section 1, Darmann et al. [2] showed that the
MCPMPC is strongly NP-hard even if the conflict graph is a
collection of single edges. This result rules out (unless P ¼NP)
the possibility of getting polynomially solvable special cases of
the MCPMPC by restricting the structure of the conflict graph
to any reasonable non-trivial sparse graph. We thus consider a

related question where the topology of G is restricted, instead of
the structure of the conflict graph.

Theorem 1. The MCPMPC is NP-hard even if G is a collection of

disjoint 4-cycles.

Proof. We reduce the maximum independent set problem to an
MCPMPC on a collection of 4-cycles. Let ~G ¼ ð ~V , ~EÞ be a given
graph with ~V ¼ f1,2, . . . , ~ng. For each node iA ~V , create a 4-cycle
ai�bi�gi�di�ai. Let the cost of ðai,biÞ and ðgi,diÞ be �1

2 and the cost
of ðbi,giÞ and ðdi,aiÞ be 0. The resulting graph G0 is shown in Fig. 1.
Note that any perfect matching in G0 must select either both edges
ðai,biÞ and ðgi,diÞ, or both edges ðai,diÞ and ðbi,giÞ.

Let

P¼ ffðai,biÞ,ðgj,djÞg,fðai,biÞ,ðaj,bjÞg,fðgi,diÞ,ðaj,bjÞg,

fðgi,diÞðgj,djÞg : ði,jÞA ~Eg

be the conflict set. Thus we have constructed an instance of the

MCPMPC. It is not difficult to verify that the maximum indepen-

dent set in ~G is of size k if and only if the MCPMPC has optimal

objective function value �k. Since the maximum independent set

problem is NP-hard [8], the MCPMPC on a collection of disjoint

4-cycles is also NP-hard. &

Corollary 1. (1) The maximization version of the MCPMPC on a

collection of disjoint 4-cycles is NP-hard.

(2) The MCPMPC (minimization/maximization) cannot be approxi-

mated within a factor of m1�E, for any E40, even if G is a collection

of disjoint 4-cycles.

Proof. By replacing the edge costs �1
2 by 1

2 and following similar
arguments as in the proof of Theorem 1, (1) follows. The proof of
(2) is also straightforward since the reduction discussed in the
proof of Theorem 1 and Corollary 1(1) is approximation ratio
preserving and it is well known that the maximum independent
set problem on a graph with m edges cannot be approximated
within a factor of m1�E for any E40 [8]. &

Related complexity results on 2-ladder conflict graphs are
discussed in [2].

Next we consider a graph G¼ ðV ,EÞ with the following
properties:

(P1) There exists subgraphs G1,G2, . . . ,Gk such that any perfect
matching M in G is a union of perfect matchings Mi in Gi, i.e.
M¼

Sk
i ¼ 1 Mi.

(P2) Each Gi has a specified edge ei such that ei does not conflict with
any of the edges of Gi and the conflict set PDfe1,e2, . . . ,ekg�

fe1,e2, . . . ,ekg, i.e. there are no conflict pairs containing edges in
E\fe1,e2, . . . ,ekg. Thus the vertex set of Ĝ can be viewed as
fe1,e2, . . . ,ekg.

Fig. 2 gives an example of a graph G and the associated conflict
graph Ĝ satisfying properties (P1) and (P2).

Fig. 1. G0 as a collection of disjoint 4-cycles constructed from ~G .
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