
Countering the negative search bias of ant colony optimization in
subset selection problems

Jan Verwaeren n, Karolien Scheerlinck, Bernard De Baets

KERMIT, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Coupure Links 653, Ghent, Belgium

a r t i c l e i n f o

Available online 6 November 2012

Keywords:

Evolutionary computations

Combinatorial optimization

Ant colony optimization

Search bias

Subset problems

a b s t r a c t

In their quest to find a good solution to a given optimization problem, metaheuristic search algorithms

intend to explore the search space in a useful and efficient manner. Starting from an initial state or

solution(s), they are supposed to evolve towards high-quality solutions. For some types of genetic

algorithms (GAs), it has been shown that the population of chromosomes can converge to very bad

solutions, even for trivial problems. These so-called deceptive effects have been studied intensively in

the field of GAs and several solutions to these problems have been proposed. Recently, similar problems

have been noticed for ant colony optimization (ACO) as well. As for GAs, ACO’s search can get biased

towards low-quality regions in the search space, probably resulting in bad solutions. Some methods

have been proposed to investigate the presence and strength of this negative bias in ACO. We present a

framework that is capable of eliminating the negative bias in subset selection problems. The basic Ant

System algorithm is modified to make it more robust to the presence of negative bias. A profound

simulation study indicates that the modified Ant System outperforms the original version in problems

that are susceptible to bias. Additionally, the proposed methodology is incorporated in the Max–Min AS

and applied to a real-life subset selection problem.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Most population-based metaheuristics will initially search for
solutions in a random manner. Because of this, the agents in the
first generations will often find solutions of intermediate quality.
However, the results of this initial random search will influence the
agents in later generations. As a result, the agents of these later
generations are biased; they will concentrate their search on some
part of the search space. Since metaheuristics are intended to find
high-quality solutions, it is desirable that the focus of the search is
directed towards the promising regions in the search space. How-
ever, it has been noticed that evolutionary algorithms can evolve
towards less promising regions. For genetic algorithms (GAs) this
phenomenon was called deception in [1]. In [2], the concept of
deception is generalized to ant colony optimization (ACO).

Up to now, research on the avoidance of bias in ACO is limited.
It has been argued on multiple occasions [2–4] that the choice of a
suitable pheromone representation can mitigate the effects of
negative search bias. However, as far as we know, there is no
evidence that the choice of a suited pheromone representation on

its own can eliminate all the deceptive effects. Therefore, we
introduce a new kind of deception avoidance strategy that is
suited for solving subset selection problems, such as for instance
the well-known knapsack problem [5], with ACO. However, our
bias-avoidance mechanisms are applicable to a wide range of
problems as illustrated in the experimental section.

This paper is organized as follows. In Section 2, we give a brief
review of the Ant System algorithm. In the third section, bias in
metaheuristics is considered in general and discussed more in detail
in the light of ACO. In Section 4, modifications of the basic Ant
System algorithm are proposed to counter negative search bias.
Sections 5 and 6 describe the setup and results of a wide range of
experiments. Finally, some conclusions are drawn in Section 7.

2. Ant System

Ant System (AS) was the first real ACO algorithm, inspired on
the behaviour of real ants, and was introduced by [6]. Since its
development, this basic version of ACO has been altered numer-
ous times in order to increase its performance or to adapt it to
specific problem settings [7]. Although it is sometimes argued
that the performance of AS is inferior to younger variants such as
the Max–Min Ant System (MMAS) [8], we will mainly use it as the
basic algorithm for this study. This choice seems justified since AS
contains all the basic ACO elements. Moreover, even in recent

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cor.2012.10.019

n Corresponding author. Tel.: þ32 92645931; fax: þ32 92646220.

E-mail addresses: Jan.Verwaeren@UGent.be (J. Verwaeren),

Karolien.Scheerlinck@UGent.be (K. Scheerlinck),

Bernard.DeBaets@UGent.be (B. De Baets).

Computers & Operations Research 40 (2013) 931–942

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2012.10.019
dx.doi.org/10.1016/j.cor.2012.10.019
dx.doi.org/10.1016/j.cor.2012.10.019
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2012.10.019&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2012.10.019&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2012.10.019&domain=pdf
mailto:Jan.Verwaeren@UGent.be
mailto:Karolien.Scheerlinck@UGent.be
mailto:Bernard.DeBaets@UGent.be
dx.doi.org/10.1016/j.cor.2012.10.019
dx.doi.org/10.1016/j.cor.2012.10.019


studies [9,10], AS is still used and achieves state-of-the-art
results. Additionally, it is the simplest form of an ACO algorithm.
Moreover, rather than constructing a new state-of-the-art algo-
rithm, our main goal is to study the behaviour of ACO algorithms
in general. Nevertheless, we can incorporate our methodology
into ACO variants such as MMAS, as will be illustrated in the
application section.

2.1. Basics and notations

Let us start with the formal definition of a subset selection
problem. A subset selection problem described by a triple ðS,f ,gÞ,
with item set S, objective function f : 2S-R and constraint function
g : 2S-f0,1g consists of the following optimization problem:

max
xA2S

f ðxÞ s:t: gðxÞ ¼ 1:

In the following sections, subsets of S will often be denoted as
n-tuples, requiring an ordering/indexing of the elements of S, i.e.

S¼ fs1, . . . ,sng. Formally, a subset xA2S can be written as an n-

tuple /sj1
1 , . . . ,sjn

n S, where ji¼1 if siAx and ji¼0 if si =2 x. Let xi be

the i-th component of this n-tuple. We have that xiAXi ¼ fs
0
i ,s1

i g.

Denoting X i ¼ X1 � � � � � Xi (irn) we can write 2S
�

Xn ¼ X1 � � � � � Xn. Using this tuple notation, we define the

feasible space X f
n ¼ fxAXn9gðxÞ ¼ 1g. Now consider the set

Si ¼ S\fsiþ1, . . . ,sng and yiA2Si . yi can be written as an i-tuple:

yi ¼/sj1

1 , . . . ,sji

i SAX i. Moreover, let yi
k� ¼/sj1

1 , . . . ,sjk

k S be the first k

ðkr iÞ components of the i-tuple yi, then yi
k�AXk. For i-tuples, the

feasible space is defined as X f
i ¼ fy

iAX i9ð(xAX f
nÞðxi� ¼ yiÞg. Finally,

using the concatenation operator � on tuples, we can write

x¼ xi� �/s
jiþ 1

iþ1, . . . ,sjn
n S.

2.2. AS for subset selection

In this section we will briefly describe (our interpretation of)
AS for subset selection, closely following the original AS proposed
in [6]. Pheromone trail parameters are a key ingredient of AS. In
this paper, we assign a pheromone trail parameter tj

i to each si
j

where tj
iðtÞARþ denotes the value of this parameter at genera-

tion (iteration) t. Moreover, we will use T to refer to the complete
matrix of pheromone trail parameters (and T(t) their values at
time t). Since ACO is a constructive metaheuristic, each individual
agent (ant) builds its own solution starting from scratch. As such,
an agent starts with an empty partial solution (a tuple of length
zero) y0 ¼/S and extends it through concatenation at each
construction step. During the i-th ði¼ 1, . . . ,nÞ construction step,
the tuple yiAX i is constructed as yi ¼ yi�1 �/sj

iS (with jAf0,1g
and yi�1AX f

i�1), where sj
i is the result of a probabilistic decision

rule, parameterized by T:

Pðsj
i9y

i�1,TðtÞÞ ¼
tj

iðtÞ Zðs
j
iÞP

fsk
i
AE

yi�1 g
tk

i ðtÞ Zðs
k
i Þ

for all sj
iAEyi�1 : ð1Þ

Here Zðsj
iÞ represents the heuristic information, a simple

(optional) measure that gives a rough estimate of the a priori

desirability of adding this component given the current partial
solution. Eyi�1 ¼ faAXi9ð(xAX f

nÞðxi� ¼ yi�1 �/aSÞg contains the
component values that can be used to extend the partial solution
yi�1 such that yi can still lead to feasible solutions. Consequently,
we will denote the construction procedure as SolutionConstruc-

tion. Using Eq. (1), we have Pðx9TðtÞÞ ¼
Qn�1

i ¼ 0 Pðxiþ19xi�,TðtÞÞ.
Once all ants within one generation have built their solution,

each ant will individually update the pheromone trail parameters.

In the t-th iteration, K ants construct a set of n-tuples At . This set
is used in the following update rule:

tj
iðtþ1Þ ¼ ð1�rÞtj

iðtÞþr

P
fxAAt9s

j
i
Axg

f nðxÞP
fxAAtg

f nðxÞ
, ð2Þ

where f nðxÞ is a monotonic transformation of f ðxÞ (often
f nðxÞ ¼ f ðxÞ). This update is performed for all pheromone trail
parameters tj

i. As a consequence of this kind of update rule, the
pheromones linked with solution components that were part of
multiple solutions with high objective function values will receive
high updates. Note that Eq. (2) is the update rule used in the
hyper-cube framework (HCF) [11]. When the denominator in Eq.
(2) is omitted, the standard AS update is obtained. This procedure
will be denoted as PheromoneUpdate. Combining the principles
described above leads to algorithm BASICAS.

1: procedure BASICAS ðXn,f ,gÞ
2: Tð0Þ’InitializePheromones
3: while no convergence do x terminated if

converged
4: solutionsLastGen’null

5: for ant¼ 1, . . . ,K do x make paths
6: x’SolutionConstructionðTðtÞÞ
7: solutionsLastGen.add(x)
8: end for
9: PheromoneUpdate(T(t), solutionsLastGen)
10: end while
11: return convergedSolution
12: end procedure

3. Bias in metaheuristics

Search bias is a key concept in the field of evolutionary algorithms.
Starting from an initial state, evolutionary algorithms are expected to
evolve towards the more promising regions in the search space.
Typically, these algorithms start searching through the search space
in a random, undirected manner. The solutions with the highest
objective function values that are found during the first iteration will
influence the search direction in the following iteration; they will bias
the search towards the point in the search space they represent. This
process continues as the solutions that are found during the second
iteration will influence the search direction in the third iteration, and
so on. As a result, the search might be drawn towards the promising
regions in the search space. Stated differently, several positions in the
search space will compete for attention from the algorithm. In order
to find good solutions, the most attractive points in the search space
should have the highest objective function values (and thus be good
solutions). Unfortunately, the objective function values are not the
only factors that influence the attractiveness of particular regions in
the search space. Firstly, as we will see below, the search space can
over-represent some solutions, making these solutions more attrac-
tive for the search procedure. Secondly, several properties of the
evolutionary algorithm that is used can (unwantedly) direct the
search towards specific regions in the search space. When such
regions represent low-quality solutions, this type of bias can be
harmful for an evolutionary algorithm. This phenomenon has been
the subject of intensive study in GAs [12–15] and is sometimes
referred to as negative search bias. In the field of ACO, negative search
bias has drawn some attention as well [2,4,11,16]. In these studies,
several (at least three) sources of bias have been identified (we
review these sources below). Moreover, [17] define and use a
deterministic model to study the dynamics of ACO. More precisely,
they use a fixed point analysis of the deterministic model to explain
several dynamical properties of ACO.

J. Verwaeren et al. / Computers & Operations Research 40 (2013) 931–942932



Download English Version:

https://daneshyari.com/en/article/10346256

Download Persian Version:

https://daneshyari.com/article/10346256

Daneshyari.com

https://daneshyari.com/en/article/10346256
https://daneshyari.com/article/10346256
https://daneshyari.com

