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For many combinatorial problems the solution landscape is such that near-optimal solutions share

common characteristics: the so-called commonalities or building blocks. We propose a method to

identify and exploit these commonalities, which is based on applying multistart local search. In the first

phase, we apply the local search heuristic, which is based on simulated annealing, to perform a set of

independent runs. We discard the solutions of poor quality and compare the remaining ones to identify

commonalities. In the second phase, we apply another series of independent runs in which we exploit

the commonalities. We have tested this generic methodology on the so-called job-shop scheduling

problem, on which many local search methods have been tested. In our computational study we found

that the inclusion of commonalities in simulated annealing improves the solution quality considerably

even though we found evidence that the job-shop scheduling problem is not very well suited to the use

of these commonalities. Since the use of commonalities is easy to implement, it may be very useful as a

standard addition to local search techniques in a general sense.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we present a simple way to improve a local
search algorithm like simulated annealing by identifying and
exploiting commonalities. The basic idea is that we determine
and compare a large number of good solutions: an element of the
solution that occurs in so many high quality solutions is most
likely to be a good element. We then run our local search
algorithm again, where we favor solutions that contain the
commonalities that we have discovered before.

As far as we know, the name commonality originates from the
work by Schilham [1], who investigated local search methods for
combinatorial optimization problems, like the job-shop problem
and the traveling salesman problem. Based on his experiments, he
formulated the following two hypotheses:

1. Good solutions have many building elements (which he called
commonalities) in common.

2. The number of commonalities increases with the quality of the
solution.

These observations led him to the following idea: when you get
stuck in a run of a local search algorithm, do not apply a random

restart, but use information from the solutions obtained so far. He
implemented it by applying random perturbations to the current
solution, where the probability of perturbing a building element
depends on the number of times that it occurs in a reference pool
containing ‘good’ solutions found earlier in the run.

Commonalities show strong resemblance to the so-called
building blocks, which are widely believed to determine the
success of genetic algorithms. The idea is that solutions sharing
these parts will become dominant in the pool of solutions, which
makes it very likely that they will be part of the final solution.

We have looked at the possibility of applying commonalities to
find a good solution of the job-shop problem (see Section 2 for a
description), just like Schilham did. In contrast to Schilham, we
explicitly determine the commonalities by running a first series of
independent runs of a local search algorithm. After having
determined the commonalities, we apply a second series of
independent runs in which we favor the occurrence of the
commonalities. This resembles the working of a genetic algo-
rithm, which combines building blocks to get a good solution. The
nice thing about our procedure is that we run some kind of
genetic algorithm without having to bother about how to code a
solution and how to define the cross-over operator and the
selection mechanism. We have tested our algorithm on a number
of benchmark instances.

The outline of the paper is as follows. In Section 2 we describe
the job-shop scheduling problem, which we use to test the merits
of our approach. In Section 3 we describe the disjunctive graph
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model of the job-shop scheduling problem, which we need for
our local search algorithm. In Section 4 we present our initial
simulated annealing algorithm, the derivation of the commonal-
ities, and the incorporation of the commonalities in the simulated
annealing algorithm. In Section 5 we present our computational
results, and in Section 6 we draw some conclusions.

2. The job-shop scheduling problem

In a job-shop scheduling problem (JSSP) we have m machines,
which have to carry out n jobs. In our variant of the JSSP, we
assume that each job has to visit each machine exactly once;
hence, each job consists of m operations, which have to be
executed in a fixed order. For each operation we are given the
machine by which it must be carried out without interruption and
the time this takes, which is called the processing time. Each
operation can only start when its job predecessor (the previous
operation in its job) has been completed. All machines are
assumed to be continuously available from time zero onwards,
and each machine may only carry out one operation at a time.
There is no time needed to switch from carrying out one job to
another. Waiting between two operations of the same job is
allowed, just like waiting between two operations on the same
machine. The problem is to find a feasible schedule, which is fully
determined by the completion time of each operation; the
completion times can easily be computed when the order in
which the operations are executed is known for each machine,
since it is never advantageous to leave the machine idle if there
exists an operation to start. The goal is to minimize the time by
which the last machine (or job) finishes; this is also called the
makespan or the length of the schedule (Fig. 1).

There exist many practical problems that boil down to a job-shop
scheduling problem (see for example [2]). Unfortunately, this pro-
blem is known to be NP-hard in the strong sense, even if each job
visits each machine in the same order (the so-called flow-shop
problem). Moreover, Williamson et al. [3] have shown that already
the problem of deciding whether there exists a feasible schedule of
length 4 is NP-hard in the strong sense; hence, since all outcome

values are integral, this result implies that there cannot exist a
polynomial algorithm with worst-case bound less than 5/4, unless
P ¼NP, as this algorithm must find a solution with outcome value
smaller than 5 (and hence with value 4), if and only if a solution with
outcome value 4 exists, thus deciding in polynomial time this
strongly NP-hard problem. Furthermore, these problems are also
very hard to solve in practice; instances with more than 20 jobs
usually are computationally intractable. Therefore, many researchers
have studied local search methods, like for example tabu search
based algorithms [4,5], simulated annealing based algorithms [6] and,
more recently, hybrid genetic algorithms [7,8]; all of these studies
report that good results are obtained. Because of the simplicity of
implementation, we use simulated annealing as our basic local search
algorithm, in which we incorporate the use of commonalities.

3. The disjunctive graph model

It has become standard now to model an instance of a job-
shop scheduling problem using a disjunctive graph, as was
introduced by Roy and Sussman [9]. This graph is constructed
as follows. The vertices V of the disjunctive graph represent the
operations; vertex vi, corresponding to operation i, gets weight
equal to its processing time pi. Furthermore, there are two
dummy vertices vstart and vend. We draw an arc (vi,vj) between
vertices vi and vj if the operation j is the direct successor of
operation i in some job. Furthermore, we include an edge between
each pair of vertices that correspond to two operations that must
be executed by the same machine and that do not belong to the
same job. All arcs and edges get weight zero. Finally, we add arcs
from vstart to the first operation of each job and arcs from the last
operation of each job to vend. In the example Fig. 2 each job j

(j¼1,2,3) consists of three operations, which are depicted as
vertices (j.i) (i¼1, 2, 3); all operations belonging to the same job
are on the same horizontal height and share the same color.
Finally, the edges are depicted by dotted lines.

Since a schedule is fully specified when the order of the
operations on the machines is given, we have to direct the edges
such that an acyclic graph remains. See Fig. 3 for an example.

Fig. 2. A disjunctive graph representing a JSSP instance.

Fig. 1. Example with optimal solution for a JSSP instance with four machines and seven jobs.
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