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A b s t r a c t - - o f  the multistep quasi-Newton methods introduced by the authors in [1], the most 
successful was the so-called fixed-point method using the existing Hessian approximation to compute, 
at each iteration, the parameters required in the interpolation. In order to avoid the burden of 
computing the additional matrix-vector products required by this approach, approximations based 
on the secant equation were proposed. In [2], a different approach to dealing with this difficulty 
was proposed, in which standard single-step quasi-Newton updates were alternated, on successive 
iterations, with two-step updates, so that approximations were no longer necessary. 

Recent work has shown that the quantities required to compute the parameters referred to above 
may be computed exactly by means of a recurrence, so that the technique of alternation is no longer 
the only alternative if we wish to avoid approximations. In this paper, we describe the derivation of 
this recurrence. We present the results of a range of numerical experiments to compare and evaluate 
the three approaches of approximation, alternation, and recurrence. Finally, we show how the use of 
recurrences may be extended to multistep methods employing three or more steps. (~) 2005 Elsevier 
Ltd. All rights reserved. 

K e y w o r d s - - U n c o n s t r a i n e d  optimisation, Quasi-Newton methods, Multistep quasi-Newton meth- 
ods. 

1. I N T R O D U C T I O N  

The problem we consider here is the unconstrained minimisation of a twice continuously dif- 
ferentiable objective function f(x) (where x E Rn). We denote the gradient and Hessian of f 
by g and G, respectively. Quasi-Newton methods for this problem imitate Newton's method, 
without requiring that the Hessian be available in explicit form. Instead, they compute ap- 
proximations {Bi} to the Hessian matrices at the various iterates {xi} which are generated. In 
standard quasi-Newton methods, the new approximation Bi+l is required to satisfy the secant 
(or quasi-Newton) equation [3] 

Bi+lSi = yi, (1) 

0898-1221/05/$ - see front matter ¢~) 2005 Elsevier Ltd. All rights reserved. 
doi:10.1016/j.camwa.2005.08.006 

Typeset by .AA~-~X 



1042 J.A. FORD AND I. A. MOGHRABI 

where si is the step from xi to Xi+l and yi is the corresponding gradient difference 

s~ = x i + l  - x i ;  (2)  

Yi = g(xi+l)  - g(xi).  (3) 

Because such methods employ data from just one step in performing the update of Bi, we refer 
to them as single-step methods. In contrast, two-step quasi-Newton methods require that  the 
approximation Bi+l satisfy a condition of the following form: 

B~+l(S~ - 7~si-1) = Yi - 7iYi-a (4) 

o r  

Bi+ir~ = wi, say. (5) 

The derivation of (4) is described by Ford and Moghrabi [4,5]. Quadratic curves x(T) and 
h( r )  ~ g(x( r ) )  (where r E R) axe constructed which interpolate, respectively, the three latest 
iterates xi-1,  xi, and xi+l,  and the three associated gradient evaluations (which axe assumed to 
be available). The derivatives of these two curves (evaluated at ~- = T2, where rj  is the value of a- 
for which 

x(a-~) = x~-l+~) 

are then substituted into the relation (derived from the chain rule) 

G(x~+l)x'(a-2) = g'(x(a-2)), (6) 

where primes denote differentiation with respect to a-. On making substitutions for the derivatives 
into (6) and removing a common scaling factor, we obtain a relation of the form (4) for 

Bi+l .~ G(xi+l) 

to satisfy. Since equation (4),(5) has the same structural form as (1), it follows that  Bi+l may then 
be obtained (for example) by use of an appropriately modified version of the BFGS formula [6-9] 

Bir~rT B~ wiw~ 
Bi+, = B, r~B , r ,  + w ~ r ,  (7) 

& BFGS(Bi, rl, wi). (8) 

The remainder of this paper is organised as follows: in Section 2, we give a description of two 
techniques for determining a suitable parametrisation of the interpolating curve x(a-). Section 3 
covers two strategies (namely, approximation and alternation) for reducing the computational 
effort involved in these interpolations for certain choices of a weighting matrix. In Section 4, 
we raise and answer (on the basis of numerical experiments) two questions about one of these 
strategies, while Section 5 develops an alternative strategy based on recurrences and Section 6 
presents the results of further experiments to compare all three strategies. 

2 .  D E T E R M I N I N G  T H E  P A R A M E T R I S A T I O N  O F  T H E  C U R V E  

The term 7i in equation (4) is an expression depending on the three values a-o, a'l, and a-2. I t  
is therefore necessary to choose these three values with care, since the updating of the Hessian 
approximation (and, therefore, the numerical performance of such an algorithm) is determined 
by the value of q'i (see equation (7)). Two successful approaches to the issue of defining suitable 
values for {a-k }~=0 for general m-step multistep methods were developed by Ford and Moghrabi [1]. 
Distances between iterates xj in R n are measured by using a norm of the general form 

IP'IIM ~ {zTMz} ' /2 , (9) 
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