Computers & Operations Research 38 (2011) 1143-1152

journal homepage: www.elsevier.com/locate/caor

Contents lists available at ScienceDirect

Computers & Operations Research

puter.
& operations

Faster integer-feasibility in mixed-integer linear programs by branching to

force change

Jennifer Pryor, John W. Chinneck *

Systems and Computer Engineering, Carleton University, Ottawa, Ontario, Canada K1S 5B6

ARTICLE INFO ABSTRACT

Available online 27 October 2010

Keywords:

Mixed-integer programming
Branching

Integer feasibility

Branching in mixed-integer (or integer) linear programming requires choosing both the branching
variable and the branching direction. This paper develops a number of new methods for making those two
decisions either independently or together with the goal of reaching the first integer-feasible solution
quickly. These new methods are based on estimating the probability of satisfying a constraint at the child
node given a variable/direction pair. The surprising result is that the first integer-feasible solution is

usually found much more quickly when the variable/direction pair with the smallest probability of
satisfying the constraint is chosen. This is because this selection forces change in many candidate
variables simultaneously, leading to an integer-feasible solution sooner. Extensive empirical results are

given.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Mixed-integer linear programs (MILP) are composed of a linear
objective function and linear constraints over a set of variables,
some or all of which are restricted to take on integer or binary
values (“integer” is assumed to include “binary” as a special case
hereafter). The most popular solution approach is branch and
bound, supplemented with cuts and various other heuristics such
as local searching (see e.g. Johnson et al. [1]). Nodes in the resulting
search tree are variations on the original model with tightened
bounds on the integer variables and/or added cut constraints. The
bounding formula applied at a node in the search tree consists of
the solution of a linear programming (LP) relaxation of the modified
version of the original model represented by the node. The LP
relaxation is a linear programming solution of the node model that
simply ignores the integer restrictions on the variables.

A branch and bound node that is chosen for further expansion
has an LP relaxation solution in which at least one of the integer
variables does not have an integer value; such integer variables are
candidates for branching. A candidate variable is chosen for
branching and two child nodes are created: branching up adjusts
the bound on the branching variable to be no less than the current
value rounded up, while branching down adjusts the bound on the
branching variable to be no more than the current value rounded
down. If there are k candidate variables, then there are 2k ways to
proceed from the current node to the next node in the usual depth-

* Corresponding author.
E-mail addresses: jpryor@sce.carleton.ca (J. Pryor),
chinneck@sce.carleton.ca (J.W. Chinneck).

0305-0548/$ - see front matter © 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cor.2010.10.025

first exploration of the search tree. The heuristic used for choosing
which of the 2k potential child nodes to explore next can have a
major impact on the speed of the MILP solution.

There are two main ways to branch, i.e. to choose the child node
to explore next. The most common approach is to first choose the
candidate variable, and then choose the branching direction (i.e.
decide whether to branch up or down). A great deal of research
exists on heuristics for choosing the candidate variable, but there is
surprisingly little research on the best way to choose the branching
direction once the candidate variable has been selected. The second
approach is to choose the branching variable and the branching
direction simultaneously. There is relatively little research on
techniques in this category.

This paper addresses the question of the best branching
heuristic (i.e. the heuristic that most often reaches the first feasible
solution fastest), given the node that is to be expanded. Exploring
this question sheds some light on the characteristics of MILP
models that affect how well various branching techniques work.
Influential characteristics include the presence or absence of
equality constraints, the inclusion of “multiple choice” constraints,
and the fraction of inequality constraints that are violated by
adjusting the branching variable in the up vs. down directions. The
analysis uncovers some important general principles in branching.

The metric of interest in this paper is speed in reaching the first
integer-feasible solution. This is important for several reasons.
First, several classes of MILP problems do not have an objective
function and require only a feasible solution. Second, in very large
MILPs it is wise to reach an incumbent solution early so that at least
one integer-feasible solution is in hand should the time limit be
reached, and because an incumbent is then available for pruning
the developing tree, thereby reducing the overall solution time.


www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2010.10.025
mailto:jpryor@sce.carleton.ca
mailto:chinneck@sce.carleton.ca
dx.doi.org/10.1016/j.cor.2010.10.025
dx.doi.org/10.1016/j.cor.2010.10.025

1144 J. Pryor, J.W. Chinneck / Computers & Operations Research 38 (2011) 1143-1152

Third, if the node selection heuristic is effective, then reaching an
integer-feasible descendent of the chosen node quickly should lead
to an optimum solution more quickly.

There are a variety of branching heuristics, though most are
oriented towards fast optimality as opposed to fast integer-
feasibility; see e.g. Achterberg et al. [2] for an overview and
assessment. Many algorithms first choose the branching variable
and then the branching direction, using separate algorithms for
each decision. Given the branching variable, the most common
direction selection heuristics are: branch up always, branch down
always, or branch to the closest integer. Branching to the farthest
integer is also sometimes used. A number of commercial solvers
include a parameter that allows the user to make any of these
choices, along with the choice to let the solver decide the branching
direction using its own heuristic.

Previous research provides no definite conclusions about which
branching direction heuristic is best. Meyer et al. [3] studied
branching direction selection in the context of optimizing the
placement of radioactive seeds for cancer treatment. They com-
pared the branch up, branch down, and closest integer direction
selection heuristics in combination with different node selection,
variable selection and scaling techniques, as well as with variations
on the MILP model itself. They conclude that the branching
direction heuristic has a significant impact on solution times,
but could not identify an overall best heuristic: each method
performed better or worse depending on the scaling method used.
For example, branching down worked well with aggressive scaling,
and branching up worked best with standard scaling.

Jariwala [4] studied branch and bound solutions to the dynamic
layout problem, comparing the usual three branching direction
selection heuristics: branch up, branch down, and closest integer.
He concludes that fixing the branching variable direction selection
to either branch up or branch down is more effective than using the
closest integer heuristic for this problem. Bernatzki et al. [5] looked
at branching direction selection heuristics in a MILP model for
optimizing scrap combination for steel production. They test
branching up and branching down on the binary variables, and
concluded that branching down performs best for this model.

Driebeek [6] developed a well-known branching heuristic that
selects both the branching variable and the branching direction.
Tomlin [7] extended Driebeek’s idea by considering the integrality
of variables. The resulting Driebeek and Tomlin method is a penalty
method that estimates the potential degradation of the objective
function value due to selecting a candidate variable, as estimated
by performing a dual simplex pivot, which generates a lower bound
on the bound improvement possible if a given candidate variable is
selected as the branching variable [8]. Degradation bounds are
calculated separately for branching up and for branching down. The
largest degradation bound is used to choose the branching variable,
and once chosen, the smaller of the bounds for that variable is used
to choose the branching direction. This method is designed to reach
optimality quickly, rather than integer feasibility. It is the default
heuristic for branching variable and direction selection in the GLPK
MILP solver [9] that is used in the experiments reported in this
paper.

There are a variety of specialized algorithms for reaching
integer-feasibility quickly in MILPs that are not solely branching
heuristics. The pivot-and-shift algorithm [10] has a first phase that
seeks integer feasibility using a variety of special techniques
including rounding, specialized pivots and small neighbourhood
searches. The OCTANE heuristic [11] for binary integer programs
uses the intersection of the improving direction with the extended
facets of the solution hyper-octagon to identify good binary
solutions to try. The feasibility pump [12] alternates linear
programming solutions with rounding. This paper concentrates
on branching-related methods.

The general folklore is that branching in the up direction is
usually best. This is definitely true in the case of so-called “multiple
choice” constraints, which are composed entirely of binary vari-
ables and have the form x;+x,+x3+---+x, {<,=}1. For these
constraints, branching up on the branching variable (i.e. setting
it to 1) forces all other variables in the constraint to zero, hence all
variables take on integer values simultaneously. On the other hand,
branching down on the branching variable (i.e. setting it to 0)
allows the other variables to take on non-integer values, hence
fewer, if any, are forced to integer values. Branching up on a
variable in a multiple choice constraint is decidedly preferable for
reaching integer-feasibility quickly.

While not guaranteed, each branch in a branch and bound
solution will more often than not force the branching variable to an
integer value. To reach an integer feasible solution more quickly it
is desirable to force as many additional candidate variables as
possible to integer values at each branch. How to do this is
straightforward in the case of multiple choice constraints, but
not so obvious for other classes of constraints. However because
every candidate variable must be forced to an integer value to reach
an integer-feasible solution it is obviously a poor idea to branch in
such a way that few candidate variables are affected. The general-
ization of this idea is that branching should force as many candidate
variables as possible to change their values, whether or not it can be
guaranteed that they will change to integer values: some may be
forced to integer values, thereby speeding the solution.

This brings us to the central theme of this paper, namely branching
to force change in the candidate variable values. This is extremely
effective in the case of multiple choice constraints, where branching up
forces all candidate variables in the constraint to integer values
simultaneously. This principle has not been previously articulated as
a central motivation in branching heuristics. Most branching variable
selection heuristics concentrate on forcing change in the value of the
objective function. The single exception is the active constraints
branching variable selection method of Patel and Chinneck [13], which
concentrates on choosing the branching variable that has the greatest
impact on the active constraints in the current LP-relaxation solution.
Patel and Chinneck’s Method A chooses the candidate variable that
appears in the largest number of active constraints. In so doing it is also
choosing the candidate variable that affects the values of the largest
number of other candidate variables via their involvement in the active
constraints. This is a very effective heuristic, outperforming state of the
art commercial MILP solvers in reaching the first integer-feasible
solution quickly. We will return throughout the paper to this theme of
choosing the branching variable and branching direction so as to force
change in the values of numerous candidate variables.

2. Experimental setup

The conclusions in this paper are based on extensive computa-
tional experimentation. The experimental conditions are described
below.

The open-source GLPK MILP solver version 4.28 [9] was
modified extensively to test a variety of existing and novel
branching heuristics. All parameters were set at their default
values with the following exceptions:

e Stopping conditions: solutions ran for a maximum of 2h, or
stopped earlier upon finding the first integer-feasible solution.

e Node selection: depth-first, except where noted.

e Branching variable selection and branching direction selection: as
required for the experiment at hand.

Hardware consisted of four computers running Windows XP: a
Pentium 4 CPU at 3.40 GHz with 1 GB of RAM, an Intel Core 2 CPU at



Download English Version:

hitps://daneshyari.com/en/article/10347289

Download Persian Version:

https://daneshyari.com/article/10347289

Daneshyari.com


https://daneshyari.com/en/article/10347289
https://daneshyari.com/article/10347289
https://daneshyari.com

