Legal Medicine 17 (2015) 499-502

Contents lists available at ScienceDirect

Legal Medicine

journal homepage: www.elsevier.com/locate/legalmed

Evaluation of the on-site immunoassay drug-screening device Triage-TOX in routine forensic autopsy

Mariko Tominaga, Tomomi Michiue*, Hitoshi Maeda

Department of Legal Medicine, Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan Forensic Autopsy Section, Medico-legal Consultation and Postmortem Investigation Support Center, c/o Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan

ARTICLE INFO

Short Communication

Article history: Received 4 March 2015 Received in revised form 8 October 2015 Accepted 21 October 2015 Available online 23 October 2015

Keywords: Forensic toxicology On-site immunoassay drug screening Gas chromatography/mass spectrometry Liquid chromatography/tandem mass spectrometry Urine Pericardial fluid

ABSTRACT

Instrumental identification of drugs with quantification is essential in forensic toxicology, while on-site immunoassay urinalysis drug-screening devices conveniently provide preliminary information when adequately used. However, suitable or sufficient urine specimens are not always available. The present study evaluated the efficacy of a new on-site immunoassay drug-screening device Triage-TOX (Alere Inc., San Diego, CA, USA), which has recently been developed to provide objective data on the one-step automated processor, using 51 urine and 19 pericardial fluid samples from 66 forensic autopsy cases, compared with Triage-Drug of Abuse (DOA) and Monitect-9. For benzodiazepines, the positive predictive value and specificity of Triage-TOX were higher than those of Triage-DOA; however, sensitivity was higher with Monitect-9, despite frequent false-positives. The results for the other drugs with the three devices also included a few false-negative is considered, especially for benzodiazepines, providing objective information; however, the combined use of another device such as Monitect-9 can help minimize misinterpretation prior to instrumental analysis.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Systematic instrumental identification of drugs with quantification is essential in forensic and clinical toxicological analysis, while on-site immunoassay urinalysis drug-screening devices have advantages regarding their economic and technical convenience as well as short turn-around-time performance. In forensic toxicology, on-site urinalysis drug screening is helpful in providing preliminary information on several drugs of abuse when adequately used in consideration of possible false-negatives or -positives [1–8]; however, suitable or sufficient urine specimens are not always available. Thus, a device that can be used with a minimum amount of specimen, including other body fluids, is preferable. Another issue in previous on-site immunoassay screening is poor objectivity in cases of obscure positivity, owing to the observer's visual reading. Meanwhile, the on-site drug-screening device Triage-TOX (Alere Inc., San Diego, CA, USA), using competitive fluorescence immunoassay, was recently developed to provide

* Corresponding author at: Department of Legal Medicine, Osaka City University Medical School, Asahi-machi 1-4-3, Abeno, Osaka 545-8585, Japan.

E-mail address: michi.leg@med.osaka-cu.ac.jp (T. Michiue).

preliminary qualitative results through one-step processing after sample application to the automatic analyzer, ensuring objectivity by instrumental colorimetric calibration followed by the printing of positive/negative results, independent of the operator [9,10]; however, there have been limited published data establishing the efficacy of this device in forensic autopsy cases.

Against the aforementioned background, the present study evaluated the efficacy of the on-site immunoassay drugscreening device Triage-TOX, which can present objective data on the one-step automated processor, using urine and pericardial fluid specimens from forensic autopsy cases without evident decomposition, compared with Triage-Drug of Abuse (DOA) and Monitect-9.

2. Materials and methods

2.1. Materials

Urine (n = 51) and pericardial fluid (PCF, n = 19) samples, stored at -20 °C until use, were collected from 66 forensic autopsy cases without evident putrefactive changes due to decomposition (January 2011–August 2014) to include cases where a spectrum of the following common drugs were detected by instrumental

analysis as described below [11,12]: Urine samples contained benzodiazepines (BZO, n = 24), including alprazolam (n = 3), diazepam (n = 2), estazolam (n = 2), etizolam (n = 6), flunitrazepam (n = 2), nitrazepam (n = 6), triazolam (n = 3) and their metabolites (n = 8), barbiturates (BAR, n = 14; phenobarbital), amphetamine (AMP, n = 9), methamphetamine (MET, n = 8), tricyclic antidepressants (TCA, n = 6); clomipramine (n = 3) and imipramine (n = 3), and acetaminophen (APAP: n = 3), and PCF contained BZO (n = 13), including bromazepam (n = 1), clotiazepam (n = 3), diazepam (n = 3), estazolam (n = 1), nitrazepam (n = 4), triazolam (n = 3) and their metabolites (n = 11), BAR (n = 2; phenobarbital), AMP (n = 2), MET (n = 1) and TCA (n = 1; imipramine). All specimens were negative for phencyclidine (PCP), cocaine (COC), tetrahydrocannabinol (THC), opiates (OPI) and methadone (MTD).

2.2. On-site immunoassay drug screening

Triage-TOX (Alere Inc., San Diego, CA, USA) and two reference devices, Triage-DOA (Sysmex Inc., Kobe, Japan) and Monitect-9 (VERITAS, Tokyo, Japan), were used [13,14]. Triage-TOX devices and the automated analyzer Alere Triage Meter Pro (San Diego CA, USA) were provided by Sysmex Corporation (Kobe, Japan) for the present study [15]. Minimum required amounts of specimens were 240 μ g/mL for Triage-TOX, 140 μ g/mL for Triage-DOA and 750 μ g/mL for Monitect-9. The abbreviations and threshold urine concentrations are as listed in the manufacturers' instructions (Supplementary Table 1) [10,13,14]. These devices were used following the manufacturers' instructions, which were also applied to PCF analysis. This study was approved by the institutional conflict-of-interest and ethics committees.

2.3. Instrumental analysis

Gas chromatography/mass spectrometry (GC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS) were used for instrumental identification and quantification of drugs, as previously reported [11,12]. Detection limits (cutoff values) were 0.01–0.05 μ g/mL for BZO and its metabolites, 0.01 μ g/mL for BAR, 0.001 μ g/mL for AMP and MET, 0.01 μ g/mL for TCA, 0.001 μ g/mL for OPI, and 0.001 μ g/mL for APAP with GC/MS; and 0.001–0.005 μ g/mL for BZO and metabolites, 0.001 μ g/mL for BAR, 0.001 μ g/mL for MET, 0.001–0.005 μ g/mL for TCA, and 0.001 μ g/mL for OPI with LC/MS/MS. After drug screening using both methods, quantitative analysis was performed primarily using GC/MS, followed by LC/MS/MS for BZO, diazepam metabolites (nordiazepam, oxazepam, and temazepam), and TCA (nortriptiline), which were not detected by GC/MS.

2.4. Definitions

A 'false-positive' was recorded when the on-site screening device indicated a positive result but no target drug or metabolite was detected by instrumental analysis, while a 'false-negative' was defined as a negative result with the device using the sample containing the target drug or metabolite over the threshold concentration [8].

3. Results and discussion

Substantial numbers of urine and PCF samples were available for BZO to evaluate positive and negative findings on Triage-TOX and the two reference devices in the present study (Tables 1 and 2, as well as Supplementary Tables 2 and 3); sensitivity and specificity were substantially different among these devices despite similar threshold levels of BZO mentioned in the manufacturers'

Table 1

Positive predictive value (PPV) and negative predictive value (NPV) in drug screening using postmortem urine with Triage-TOX, Triage-DOA and Monitect-9 as estimated based on the threshold concentrations listed in the manufacturer's instructions [13–15].

Urine		Triage-TOX (%)	Triage-DOA (%)	Monitect-9 (%)
Benzodiazepines	PPV	55.6	66.7	100
	NPV	73.8	100	45.2
Barbiturates	PPV	92.3	100	76.9
	NPV	94.7	94.7	92.1
Amphetamine	PPV	71.4	85.7	57.1
	NPV	95.5	95.5	97.7
Methamphetamine	PPV NPV	100 93.2		100 95.5
Tricyclic	PPV	50.0	75.0	100
antidepressants	NPV	95.8	95.7	80.9
Tetrahydrocannabinoid	PPV	_	_	-
	NPV	100	100	92.2
Opioids	PPV	-	-	-
	NPV	94.1	94.1	100
Acetaminophen	PPV NPV	100 93.9	-	-

Table 2

Positive predictive value (PPV) and negative predictive value (NPV) in drug screening using postmortem pericardial fluid with Triage-TOX, Triage-DOA and Monitect-9 as estimated based on the threshold concentrations listed in the manufacturer's instructions [13–15].

[12 12].				
Pericardial fluid		Triage-TOX	Triage-DOA	Monitect-9
		(%)	(%)	(%)
Benzodiazepines	PPV	60	40	100
	NPV	100	100	35.7
Barbiturates	PPV	100	50	100
	NPV	100	100	100
Amphetamine	PPV	_	-	-
	NPV	100	100	100
Methamphetamine	PPV	_	_	_
I III	NPV	100	-	100
Tricyclic	PPV	-	-	-
antidepressants	NPV	100	100	100
Tetrahydrocannabinoids	PPV	-	-	_
	NPV	100	100	100
Opioids	PPV	-	_	-
	NPV	100	100	100
Acetaminophen	PPV	-	-	_
	NPV	100	-	-

instructions [10,13,14]. Among BZO-positive cases with Triage-TOX and Triage-DOA, three urine and two PCF samples contained diazepam (0.006–0.334 µg/mL) with its metabolites: nordiazepam (0.025–1.414 µg/mL) in three urine and two PCF sample, oxazepam (0.003–2.344 µg/mL) in three urine and one PCF sample, and temazepam (0.005–4.013 µg/mL) in three urine samples. Metabolite concentrations were higher, except for in a PCF sample (diazepam, 0.334 µg/mL), suggesting the major contribution of metabolites to positivity. Meanwhile, a few urine and PCF samples containing BZO or its derivatives above the reference minimum-detection-limit concentration (0.334–9.079 µg/mL) resulted in false-negatives [10,13,14,16] (Supplementary Table 4). These false-negative cases included four urine samples (temazepam, 0.687 µg/mL; flunitrazepam, 0.738 µg/mL; lorazepam, 1.07 µg/mL; and nordiazepam, 9.079 µg/mL) with Triage-TOX, and three urine samples Download English Version:

https://daneshyari.com/en/article/103474

Download Persian Version:

https://daneshyari.com/article/103474

Daneshyari.com