
Exact solution of the robust knapsack problem$

Michele Monaci a,n, Ulrich Pferschy b, Paolo Serafini c

a DEI, University of Padova, Via Gradenigo 6/A, I-35131 Padova, Italy
b Department of Statistics and Operations Research, University of Graz, Universitaetsstrasse 15, A-8010 Graz, Austria
c DIMI, University of Udine, Via delle Scienze 206, I-33100 Udine, Italy

a r t i c l e i n f o

Available online 18 May 2013

Keywords:
Knapsack problem
Robust optimization
Dynamic programming

a b s t r a c t

We consider an uncertain variant of the knapsack problem in which the weight of the items is not exactly
known in advance, but belongs to a given interval, and an upper bound is imposed on the number of
items whose weight differs from the expected one. For this problem, we provide a dynamic programming
algorithm and present techniques aimed at reducing its space and time complexities. Finally, we
computationally compare the performances of the proposed algorithm with those of different exact
algorithms presented so far in the literature for robust optimization problems.

& 2013 The Authors. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The classical Knapsack Problem (KP) can be described as follows.
We are given a set N¼ f1;…;ng of items, each of them with
positive profit pj and positive weight wj, and a knapsack capacity c.
The problem asks for a subset of items whose total weight does
not exceed the knapsack capacity, and whose profit is a maximum.
It can be formulated as the following Integer Linear Program (ILP):

ðKPÞ max ∑
j∈N

pjxj ð1Þ

∑
j∈N

wjxj ≤c ð2Þ

xj∈f0;1g; j∈N: ð3Þ

Each variable xj takes value 1 if and only if item j is inserted in the
knapsack.

This problem is NP-hard, although in practice fairly large
instances can be solved to optimality within reasonable running
time. Furthermore, dynamic programming algorithms with pseu-
dopolynomial running time are available. A comprehensive survey
on all aspects of (KP) was given by Kellerer et al. [11].

In this paper we consider the following variant of (KP), aimed
at modeling uncertainties in the data, in particular in the weights:
for each item j the weight may deviate from its given nominal

value wj and attain an arbitrary value in some known interval
½wj−wj;wj þwj�. A feasible solution must obey the capacity con-
straint (2) no matter what the actual weight of each item turns out
to be. However, uncertainty is bounded by an integer parameter Γ
indicating that at most Γ items in the solution can change from
their nominal value wj to an arbitrary value in the interval. Clearly
a diminution of a weight below the nominal value does not affect
feasibility and in the worst case all changed weights reach their
upper limit. Hence a feasible solution consists of a subset of items
JDN such that

∑
j∈J
wj þ ∑

j∈Ĵ
wj≤c ∀ĴD J; jĴ j≤Γ: ð4Þ

We call this problem the Robust Knapsack Problem (RKP). It was
recently considered by Monaci and Pferschy [16] who studied the
worst-case ratio between the optimal solution value of (KP) and
that of (RKP), as well as the ratio between the associated fractional
relaxations. A similar setting with the restriction that wj ¼ δwj for
all j for some given constant δ40 was introduced by Bertsimas and
Sim [4]. Clearly this is a particular case of the model considered in
this paper.

In the following we assume, without loss of generality, that all
input data are integer and items are sorted according to non-
increasing wj values. For notational simplicity we define the
increased weights by ŵj ¼wj þwj for all j. In addition, for any
given set S of items, we will denote by pðSÞ ¼∑j∈Spj and
wðSÞ ¼∑j∈Swj the total profit and weight, respectively, of the items
in S.

In this paper we review exact solution algorithms for (RKP).
Although it is an NP-hard problem, exact solutions can be found in
reasonable time even for large instances (see in Section 6 the
computing times for instances up to 5000 items). Hence it is
adequate to look for exact methods in solving (RKP) and it is

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.05.005

$This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-No Derivative Works License, which per-
mits non-commercial use, distribution, and reproduction in any medium, provided
the original author and source are credited.

n Corresponding author. Tel.: +39 49 8277920.
E-mail addresses: monaci@dei.unipd.it (M. Monaci),

pferschy@uni-graz.at (U. Pferschy), paolo.serafini@uniud.it (P. Serafini).

Computers & Operations Research 40 (2013) 2625–2631

www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.05.005
http://dx.doi.org/10.1016/j.cor.2013.05.005
http://dx.doi.org/10.1016/j.cor.2013.05.005
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.05.005&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.05.005&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.05.005&domain=pdf
mailto:pferschy@uni-graz.at
mailto:paolo.serafini@uniud.it
http://dx.doi.org/10.1016/j.cor.2013.05.005
http://dx.doi.org/10.1016/j.cor.2013.05.005

interesting to compare the behavior of different algorithms. The
algorithms proposed in the literature up-to-date present quite
distinct features, although two of them can be shown to be very
tightly intertwined.

In Section 2 we present a dynamic programming algorithm.
The algorithm mimics the well known algorithm for the standard
knapsack problem, but is able to take care of the upper weights
once the items are sorted according to non-increasing wj values.
This algorithm, developed by the authors, is investigated in detail.
In Section 2 we show its correctness, and, as in the usual knapsack
algorithm, we show that a similar version obtained by exchanging
the roles of weights and values can be also formulated thus paving
the way to approximation schemes.

In Section 3 we address the delicate issue of implementing the
algorithm with a reduced amount of memory, since, with a large
number of items and large data coefficients, space requirements
can constitute a problem.

Other exact approaches are presented in Section 4. In particular
we review the integer programming model by Bertsimas and Sim
[4] (Section 4.1), an improvement on the iterative approach by
Bertsimas and Sim [3] which requires solving O(n) knapsack
instances (Section 4.2) and the Branch-and-Cut algorithm by
Fischetti and Monaci [8] in which the robustness requirements
are modeled by cutting inequalities (Section 4.3).

The problem we investigate is a special combinatorial optimi-
zation problem that has been motivated by a particular modeling
of the problem uncertainties. By and large this is the model which
has received most attention in the literature, although a lot of
research has been done to face problems with uncertain data (see,
e.g. the recent survey by Bertsimas, Brown and Caramanis [2]).
Recently, Poss [19] pointed out drawbacks of this approach from a
probabilistic point of view.

As to uncertainty in knapsack problems, few contributions were
proposed. (RKP) was first introduced by Bertsimas and Sim [3].
Klopfenstein and Nace [12] defined a robust chance-constrained
variant of the knapsack problem and studied the relation between
feasible solutions of this problem and those of (RKP). A polyhedral
study of (RKP) was conducted by the same authors in [13],
where some computational experiments with small instances
(up to 20 items) were given. Recently, Büsing et al. [5,6] addressed
the robust knapsack problem within the so-called recoverable
robustness context in which one is required to produce a solution
that is not necessarily feasible under uncertainty, but whose
feasibility can be recovered by means of some legal moves.
In [5,6], legal moves correspond to the removal of at most
K items from the solution, so as to model a telecommunication
network problem. For this problem, the authors gave different
ILP formulations, cut separation procedures and computational
experiments.

2. A dynamic programming algorithm

In this section we present an exact dynamic programming
algorithm for (RKP). Note that the same problem was considered
by Klopfenstein and Nace [12] who sketched a related dynamic
programming recursion in their Theorem 3. While the brief
description of the algorithm in [12] relies on a modification of a
dynamic program for the nominal knapsack problem, we present a
detailed algorithm explicitly designed for (RKP) which allows for
an improvement of the complexities. In Section 3 we will analyze
time and space complexities of our algorithm, and propose
possible methods for reducing both of them; finally, the algorithm
will be used in Section 5 to derive a fully polynomial approxima-
tion scheme for (RKP).

Our approach is based on the following two dynamic program-
ming arrays: Let zðd; s; jÞ be the highest profit for a feasible solution
with total weight d in which only items in f1;…; jgDN are
considered and exactly s of them are included, all with their upper
weight bound ŵj. Let zðd; jÞ be the highest profit for a feasible
solution with total weight d in which only items in f1;…; jgDN are
considered and exactly Γ of them change from their nominal
weight to their upper bound. Clearly, d¼ 0;1;…; c, s¼ 0;1;…;Γ,
and j¼ 0;1;…;n.

A crucial property for the correctness of our approach is the
assumption that items are sorted by non-increasing weight
increases wj. This implies the following lemma. For a subset of
items JDN denote by jΓ the index of the Γ�th item in J if jJj≥Γ,
otherwise jΓ is the index of the last item in J.

Lemma 1. A subset JDN is feasible if and only if

∑
j∈Jjj≤ jΓ

ŵj þ ∑
j∈Jjj4 jΓ

wj ≤c

Proof. The largest increase of w(J) caused by items attaining their
upper weight is due to the subset of Γ items for which the increase
wj is largest. If J is feasible with respect to this subset, it is feasible
for any other subset of J. □

Now we can compute all array entries by the following
dynamic programming recursions:

zðd; s; jÞ ¼maxfzðd; s; j−1Þ; zðd−ŵj; s−1; j−1Þ þ pjg
for d¼ 0;…; c; s¼ 1;…;Γ; j¼ 1;…;n;

zðd; jÞ ¼maxfzðd; j−1Þ; zðd−wj; j−1Þ þ pjg
for d¼ 0;…; c; j¼ Γ þ 1;…;n ð5Þ

The initialization values are zðd; s;0Þ ¼ −∞ for d¼0,…,c and
s¼ 0;…;Γ. Then we set zð0;0;0Þ ¼ 0. The two arrays are linked
together by initializing zðd;ΓÞ ¼ zðd;Γ;ΓÞ for all d. Obviously, all
entries with doŵj (respectively dowj) are not used in definition
of z (respectively z) in recursion (5). The optimal solution value of
the robust knapsack problem can be found as

zn ¼max
maxfzðd;nÞjd¼ 1;…; cg
maxfzðd; s;nÞjd¼ 1;…; c; s¼ 1;…;Γ−1g

(

and consumes a total capacity cn ≤c.
Intuitively, the dynamic programming algorithm operates in

two phases: first, it determines the best solution consisting of (at
most) Γ items with increased weight. Then, this solution is
possibly extended with additional items at their nominal weight.
This separation into two phases is possible because the sorting by
non-increasing wj guarantees that in any solution the items with
smallest indices, i.e. those that were packed into the knapsack
earlier, are those that will attain their increased weight (see
Lemma 1).

Theorem 2. The dynamic programming recursion (5) yields an
optimal solution of (RKP).

Proof. We build an acyclic directed graph and show that the
recursion corresponds to a longest path in the graph. The nodes
are labeled as ðd; s; jÞ, with d¼ 0;…; c, j¼ 0;…;n, s¼ 0;…;Γ. The
node ð0;0;0Þ is the source and an additional node, labeled t, is the
destination.
The arcs are defined as follows: within each group of nodes with

the same label s (let us denote them as a “stage”) there are arcs
ðd; s; j−1Þ-ðd; s; jÞ with value 0. Let us denote these arcs as “empty”.
Using an empty arc corresponds to never inserting item j. More-
over, there are other empty arcs with value 0 from each node
ðd; s;nÞ to the destination t to model situations in which the
solution includes less than Γ items.

M. Monaci et al. / Computers & Operations Research 40 (2013) 2625–26312626

Download English Version:

https://daneshyari.com/en/article/10347433

Download Persian Version:

https://daneshyari.com/article/10347433

Daneshyari.com

https://daneshyari.com/en/article/10347433
https://daneshyari.com/article/10347433
https://daneshyari.com

