Computers & Operations Research 40 (2013) 2670-2676

Contents lists available at SciVerse ScienceDirect

& operations
research

Computers & Operations Research

journal homepage: www.elsevier.com/locate/caor

—_—

@ CrossMark

An efficient implementation of the Min-Min heuristic

Pablo Ezzatti* Martin Pedemonte, Alvaro Martin

Instituto de Computacién, Universidad de la Reptiblica, 11300—Montevideo, Uruguay

ARTICLE INFO ABSTRACT

Available online 30 May 2013 Min—Min is a popular heuristic for scheduling tasks to heterogeneous computational resources, which
has been applied either directly or as part of more sophisticated heuristics. However, for large scenarios
such as grid computing platforms, the time complexity of a straightforward implementation of
Min—Min, which is quadratic in the number of tasks, may be prohibitive. This has motivated the
development of high performance computing (HPC) implementations, and the use of simpler heuristics
for the sake of acceptable execution times. We propose a simple algorithm that implements Min—Min
requiring only O(mn) operations for scheduling n tasks on m machines. Our experiments show, in
practice, that a straightforward sequential implementation of this algorithm significantly outperforms
other state of the art implementations of Min—Min, even compared to HPC implementations.
In addition, the proposed algorithm is at least as suitable for parallelization as a direct implementation

Keywords:

Heterogeneous computing
Grid computing
Scheduling

Min—Min heuristic

of Min—Min.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A distributed heterogeneous computing (HC) environment, such
as a grid computing platform, can employ thousands or even
millions of computational resources to solve several difficult
problems, involving the simultaneous execution of a large number
of tasks. In this context, an efficient use of the resources is a critical
issue that calls for schedules with short makespan, defined as the
time required to complete the execution of all the tasks according
to the schedule [1]. It is well known, however, that computing a
minimum makespan schedule, for a given estimate of the execu-
tion time of each task on each machine, is an NP-hard problem
[2,3]. This has motivated a big research effort focused on heuristic
methods, trying to find accurate solutions with moderate runtime
(see, e.g., the comparison of heuristics in [1,4,5]).

One of the most popular techniques for scheduling tasks in HC
environments is the deterministic heuristic Min—Min [6, Algorithm
D], which, in general, yields good schedules in acceptable execution
times [5]. For this reason, Min—Min has also been used as a building
block in more sophisticated heuristics [7—9], and applied to
produce an initial solution that is then successively improved,
typically using some local search method [1,9].

Min—Min is a greedy algorithm; having constructed a partial
schedule for a subset of the given set of tasks, the schedule is
extended in such a way that the makespan increment is minimum. A
direct implementation of Min—Min requires O(mn?) operations [6]

* Corresponding author. Tel.: +598 27114244x125.
E-mail addresses: pezzatti@fing.edu.uy (P. Ezzatti),
mpedemon@fing.edu.uy (M. Pedemonte), almartin@fing.edu.uy (A. Martin).

0305-0548/$ - see front matter © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.05.014

to schedule n tasks on m machines. (In [6], m is regarded as a
constant.) Although it is faster than other more complex heuristics
(e.g. cellular memetic algorithms [10], ant colony optimization [11],
and tabu search algorithm [12]), a time complexity that is quadratic
in n may be prohibitive in real modern HC environments, where
several thousands of tasks need to be scheduled. As a consequence,
some authors have proposed simplifications of Min—Min [13].
Others have explored high performance computing (HPC) implemen-
tations, including the use of parallel techniques, and non-traditional
hardware, such as Graphics Processing Units (GPUs) [14,15].

In this paper we propose an efficient implementation of Min—Min.
The algorithm works in two phases: first, for each machine, the tasks
are sorted in nondecreasing order of execution time estimate, and
then, in a second phase, the Min—Min schedule is constructed. Using
a radix exchange sort [16] for the first phase, and exploiting in the
second phase the fact that, for each machine, the tasks have been
sorted, we show that the algorithm only requires O(mn) operations on
registers of length O(log mn). Since, for each machine, the algorithm
stores the permutation that sorts the set of tasks, some additional
memory is required with respect to a direct implementation of
Min—Min. The latter requires O(mn) space, while the space complex-
ity of the new algorithm is O(mn log n).

Our experiments demonstrate, in practice, that this new algo-
rithm significantly outperforms the state of the art implementa-
tions of Min—Min, even compared to HPC implementations.

Summing up, the main contributions of this paper are:

® a new algorithm that efficiently implements the Min—Min
heuristic,
® 3 theoretical analysis of the algorithm, and


www.sciencedirect.com/science/journal/0305-0548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.05.014
http://dx.doi.org/10.1016/j.cor.2013.05.014
http://dx.doi.org/10.1016/j.cor.2013.05.014
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.05.014&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.05.014&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.05.014&domain=pdf
mailto:mpedemon@fing.edu.uy
mailto:almartin@fing.edu.uy
http://dx.doi.org/10.1016/j.cor.2013.05.014
http://dx.doi.org/10.1016/j.cor.2013.05.014

P. Ezzatti et al. / Computers & Operations Research 40 (2013) 2670-2676

® an experimental evaluation of the algorithm.

The rest of the paper is structured as follows. In Section 2, we
review in more detail the related works. Later, in Section 3, we
recall the formal definition of the Min—Min heuristic and establish
the notation for the rest of the paper. In Section 4, we introduce our
proposal, an efficient algorithm to compute the Min—Min heur-
istic, and analyze it theoretically. We also discuss, briefly, some
practical considerations related to the choice of the sorting algo-
rithm, and the potential parallelization of our implementation of
Min—Min. In Section 5 we present some experimental results that
validate our proposal and, finally, we discuss some conclusions and
future work in Section 6.

2. Related works

Ibarra and Kim presented one of the pioneering works on static
heterogeneous computing scheduling [6], where five different
heuristics were evaluated, including Min—Min. Additionally, the
authors also studied other strategies for two particular cases: when
the tasks have to be scheduled on only two machines, and when
the machines are identical.

Since the pioneer work of Ibarra and Kim, many researchers
have shown the benefits of Min—Min heuristic for heterogenous
computing scheduling, since it makes possible to obtain good
quality solutions in an acceptable runtime. Some of these works
are summarized below. Braun et al. [1] studied experimentally 11
heuristics for static scheduling in HC environments, including a
wide range of simple greedy constructive heuristic approaches and
Min—Min. Then, Xhafa et al. [4] have also evaluated several static
scheduling strategies, including Min—Min. In the same line of
work, Luo et al. [5] analyzed and compared a set of 20 greedy
heuristics under different conditions.

In another line of work, researchers have proposed several
extensions to Min—Min or new algorithms with several points of
contact with this heuristic. Segmented Min—Min is an algorithm
closely related to Min—Min proposed by Wu et al. [7]. In this
algorithm, tasks are sorted according to some score function of the
expected time to compute in all machines (it could be the
maximum, minimum or average expected time to compute among
all machines). Then, the ordered sequence is segmented in groups,
and finally Min—Min is applied to each of these groups of tasks.

Another common idea used by researchers is to apply a local
search method in order to improve the quality of the solution
obtained with Min—Min. Ritchie et al. [11] proposed a local search
method that selects the best task movement from a neighborhood
of solutions, which includes the solutions where a single task from
the most loaded machine is moved to another machine or it is
swapped with another task that executes on another machine. On
the other hand, Pinel et al. [9] proposed the H2LL local search
operator that chooses randomly a task from the most loaded
machine and moves it to one of the least loaded machines.

Other interesting extensions are briefly described next. He et al. [17]
proposed a QoS (Quality of Service) guided Min—Min heuristic which
can guarantee QoS requirements of certain tasks while minimizing the
makespan at the same time. He and Sun [18] integrated the time
associated to data movement into traditional scheduling on grid
environments using the Min—Min heuristic. Finally, Chauhan and
Joshi [8] combined Min—Min with the weighted mean time-Min
heuristic.

Despite the good results of Min—Min, when considering large
scenarios (both tasks and machines), the complexity of the algo-
rithm makes impracticable its direct application. This is particu-
larly important when working in grid environments because they
consist of thousands of machines, and the number of tasks to be

2671

scheduled is of the order of several thousands. For this reason, two
different approaches have been proposed to reduce the execution
time of this heuristic: to modify the original heuristic in order to
run faster or to implement the algorithm in parallel.

Diaz et al. [13] proposed a two-phase heuristic for the energy-
efficient scheduling of independent tasks on computational grids
that can be considered as a simplification of Min—Min. In the first
phase, the tasks are sorted by a certain criteria (average, minimum,
maximum expected time to compute). In the second phase, the
tasks are processed in order, searching for the best machine
assignation. This heuristic is in fact a smart extension of the B
heuristic described by Ibarra and Kim [6].

The parallel implementation of Min—Min on GPU platforms
[15] was studied considering three different approaches: a single
GPU version, and synchronous and asynchronous versions that
execute on four GPUs concurrently. Pinel et al. [14] also addressed
the parallelization of Min—Min for solving large scenarios propos-
ing both a multicore and a GPU implementation.

From all the reviewed works it is clear that Min—Min heuristic
has a wide applicability and it is widely used by the community to
solve scheduling problems. On the other hand, the resolution of
large scenarios, specially in grid environment contexts, poses an
important challenge to this heuristic due to its computational
complexity. For these reasons, a significant improvement in the
computational efficiency of the algorithm could be welcomed and
adopted by the community.

3. The Min—Min scheduling heuristic

In this section we formally define the scheduling problem and
the Min—Min heuristic. We follow, loosely, the definitions and
notation from [6]. Consider a set M of m machines and a set T of n
tasks. We assume that an expected time to compute (ETC) of a task J
on a machine i, denoted y;(J), is available for all JeT and all ieM.
A schedule S = {L;}icy, assigns a set L; of tasks to be executed on
machine i, for each ieM. The makespan of S, denoted f(S), is the
largest amount of execution time assigned by S to a machine i,
among all ieM, i.e.

f(5)=m[awx{2ﬂi(f)}~ (M
1€ ]GL,‘

Ideally, we look for a schedule with minimum makespan. As
mentioned, however, this is computationally unaffordable for
problem instances of large size, which motivated the definition of
several heuristics in [6], including Min—Min.

Algorithm 1. Min—Min heuristic.

input: A set T of tasks, a set M of machines, and the ETC
ui() for all JeT,ieM
output: A schedule S = {L;}ic

foreach ieM do
| Set Li =@, t;=0
end

Set U=T

while U#2 do

Let (i,]) = arg mingy){t; + ;(J) : ieM,JeU}. //solve ties arbitrarily
Set Li=Lu{J}, ti=t; + (), U=U\{J}.

end

0 v Ul WN =

An algorithmic definition of Min—Min is shown in
Algorithm 1. The algorithm iterates through a loop in Step 5,



Download English Version:

https://daneshyari.com/en/article/10347439

Download Persian Version:

https://daneshyari.com/article/10347439

Daneshyari.com


https://daneshyari.com/en/article/10347439
https://daneshyari.com/article/10347439
https://daneshyari.com/

