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In this paper, a modification to Dantzig-Wolfe (DW) decomposition algorithm for variational inequality
(VI) problems is considered to alleviate the computational burden and to facilitate model management
and maintenance. As proposals from DW subproblems are accumulated in the DW master problem, the
solution time and memory requirements are increasing for the master problem. Approximation of the
DW master problem solution significantly reduces the computational effort required to find the
equilibrium. The approximate DW algorithm is applied to a time of use pricing model with realistic

network constraints for the Ontario electricity market and to a two-region energy model for Canada.
In addition to empirical analysis, theoretical results for the convergence of the approximate DW

algorithm are presented.
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1. Introduction

Decomposition methods sometimes allow large-scale and com-
plex problems to be solved in a distributed and parallel fashion
that helps to overcome computational difficulties. They can reduce
the memory requirements and/or increase the speed of calcula-
tions. Alternatively they can lead to a drastic simplification of the
model development procedure and ease the model management
and maintenance [27,29]. Generally, the scope of the complex
models (e.g., related to public policy making) expands as addres-
sing one question reveals other related questions. Therefore
analyses of such models require continuous re-evaluation of the
issues. Decomposition of these models allows different analysts or
teams of experts to manage, analyze, re-evaluate and repeatedly
run sub-models. Expected run time and errors in modeling can be
reduced by using decomposition methods [27].

There are several decomposition algorithms (e.g., Dantzig—
Wolfe, Benders, Lagrangian) for solving and analyzing large-scale
equilibrium problems. Certain models may have a structure that
some of the constraints or variables prevent the separability of the
problem into subproblems. If these constraints/variables are
removed, the resulting subproblems are frequently considerably
easier to solve. These constraints/variables are usually referred to
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as “complicating” (and sometimes referred to as “common” or
“linking”) constraints/variables [8]. In Dantzig-Wolfe (DW) and
Benders decomposition, instead of solving the original problem
with complicating constraints or variables, two problems are
solved iteratively, a master problem and a subproblem, i.e., original
problem without complicating constraints or variables. The solu-
tion to the original model is obtained by exchanging price and
quantity information among the subproblem(s) and the master
problem in an iterative manner. The size of the master problem
grows as new solutions (e.g., columns in DW decomposition) from
subproblems are passed to master problem and hence, the require-
ments (e.g., computational time and memory) to solve the master
problem increase at each iteration of the decomposition algorithm.

This paper presents modifications to the DW decomposition of
variational inequality (VI) problems that allow for the approxima-
tion of the master problem to reduce the computational effort
required to solve large-scale equilibrium problems and to facilitate
the model management and maintenance.

DW decomposition of VI problems has been introduced by
Fuller and Chung [16] and Chung et al. [7]. Approximation of the
subproblems in DW decomposition of VI problems (single-valued)
for decomposition purposes has been presented by Chung and
Fuller [6] under useful assumptions. The DW decomposition of VI
problems and the approximation of the subproblems have been
also studied by Luna et al. [24]. They consider DW decomposition
in a more general setting, i.e., for set-valued and maximal mono-
tone VI mappings (in addition to the single-valued, continuous
mappings considered by Fuller and Chung [16, Chung et al., [7] and
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Chung and Fuller [6]) as well as various kinds of subproblem
approximations that were not considered by Chung and Fuller [6].
Furthermore, Luna et al. [24] consider some algorithmic enhance-
ments, including inexact solution of the approximate subproblem,
and the cheap generation of additional proposals by a projection
method.

Related to DW decomposition of VI problems, Fuller and Chung
[15] also apply Benders decomposition to VI problems and provide
convergence results and proofs for a useful class of VI problems.
Their algorithm is mainly based on DW decomposition of VI
problems and they apply a DW decomposition procedure to a dual
of the given VI. By converting the dual forms of DW master and
subproblems to their primal forms, they derive the Benders master
and subproblems. Gabriel and Fuller [17] apply Benders decom-
position to solve a two-stage stochastic complementarity problem
(or VI) for an electricity market equilibrium model. Egging [12] also
employs Benders decomposition algorithm for large-scale, stochas-
tic multi-period mixed complementarity problems (MCP) for
various multi-stage natural gas market models accounting for
market power exertion by traders. Because of the primal-dual
relations of the DW and Benders’ master problems, the approx-
imation for the DW master problem presented in this paper can
also be applied to Benders decomposition of VI problems.

In this paper, we firstly introduce the DW decomposition
algorithm for VI problems and the approximations for the solution
of the master problem in DW decomposition. Convergence analysis
is also presented. Numerical investigations are performed on two
models in energy markets. These models are a single-period
(month) time-of-use (TOU) pricing electricity market equilibrium
model with linearized DC network constraints from Celebi [4] and
a realistic two-region energy equilibrium model for Canada from
Fuller and Chung [16].

2. Background

VI problems were first developed in the context of studying a
class of partial differential equations that arise in the field of
mechanics and defined on infinite dimensional spaces [31]. In
contrast, finite dimensional VI problems have been studied for
computation of economic and game theoretic equilibria. In general,
a finite dimensional VI problem is defined as follows:

VI(G,K) :
G (x—x*)>0 vV xeK (1)

find a vector x*eK = R", such that :

where G is a given continuous function from K to R", superscript T
denotes the transpose, and K is a nonempty, closed and convex set.
Standard conditions for existence and uniqueness of solutions to VI
(G,K) are provided in Harker and Pang [21], Nagurney [31] or
Patriksson [34].

Many mathematical problems (e.g., system of equations, con-
strained and unconstrained optimization problems, complemen-
tarity problems, game theory and saddle point problems, fixed
point problems, traffic assignment and network equilibrium
problems) can be formulated as VI problems [31,21,2,34]. Unlike
an optimization problem which has an objective function, a VI
problem has a vector-valued function G, and it is equivalent to an
optimization problem only if this vector-valued function is the
gradient of an objective function. A necessary and sufficient
condition for a differentiable G to satisfy the above condition is
that the Jacobian matrix VG is symmetric or in other words, that G
is integrable, i.e., it can be integrated to define an objective
function [31]. Unfortunately, this condition does not hold in many
practical problems. In this paper, we consider problems which are
non-integrable (asymmetric). See Takayama and Judge [36] and
Samuelson [35] for further details on “integrability” conditions.
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There are different techniques or algorithms to solve such VI
equilibrium models, e.g.,, by solving a sequence of integrable
optimization problems, as in the Project Independence Evaluation
System (PIES) algorithm [1], the decoupling algorithm [37], and
more general algorithms for VI problems [31]. Alternatively, a VI
problem can be converted to an equivalent complementarity
problem and solved by Newton methods that solve a sequence of
linear complementarity problems [26,25,11,14].

PIES, which was originally developed for energy modeling for US
Department of Energy in the 1970s, captures many key features of
large-scale equilibrium models. The PIES algorithm approximates the
non-integrable equilibrium problem by a sequence of integrable
problems which can be converted into equivalent optimization pro-
blems. Each iteration solves a linear programming (LP) problem after a
proper step function approximation is made on an integrable approx-
imation of the demand function [23]. This algorithm has the char-
acteristics of the nonlinear Jacobi method for solving a system of
nonlinear equations. Ahn and Hogan [1] give sufficient conditions
under which the PIES algorithm converges. But, as Murphy and
Mudrageda [29] point out, although PIES never met these conditions,
because of demand function approximations, it usually does not fail to
converge.

In our approximations for the solution of the DW master
problem, we have also employed the PIES algorithm (as well as
another symmetric mapping) to approximate the original mapping
in the master problem (see Section 4 for details).

3. Decomposition algorithm and the approximation of the
master problem for VI problems

In this section, we summarize the main results of Fuller and
Chung [16], using a slightly different notation and following their
presentation closely. Then, we present the algorithm with an
approximation of the master problem in DW decomposition and
its underlying theory of convergence.

3.1. Dantzig-Wolfe decomposition method for VI problems

We consider a VI problem with a feasible set defined by two sets of
constraints. We distinguish one of these constraint sets as complicating
constraints, e.g., when they are relaxed a VI subproblem is formed (and
it may or may not be decomposable, but it is easier to solve or
manage). Convex combinations of solutions of the subproblem,
together with the complicating constraints, form the feasible set of
the master problem. We first define the feasible set for the original VI
as follows. All vectors are considered to be column vectors and
superscript T denotes the transpose of a vector or matrix. The feasible
set is

K = {xeR"|g(x)>0, h(x)>0}

where g is a mapping from R" to R™ such that g; is concave and
continuously differentiable for all i=1,...,m, and h is a mapping from R"
to R' such that h; is concave and continuously differentiable for all i=1,
...,I. Concavity of g and h ensure convexity of K. The constraints h(x) 20
represent the complicating constraints. The vector function G maps R"
to R". The original VI is defined as follows:

VI(G,K): find x*eK such that G(x*)T (x—x*)>0 V xeK )

We assume throughout this paper that (2) has at least one
solution.

The feasible set for the subproblem is defined by relaxing the
complicating constraints in K and it is represented as:
K = {xeR"|g(x)=0}. The subproblem at iteration k is defined with
o* 1 (the dual variable vector corresponding to the complicating
constraints from the previous master problem solved at iteration
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