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a b s t r a c t

The cutwidth minimization problem consists of finding a linear arrangement of the vertices of a graph

where the maximum number of cuts between the edges of the graph and a line separating consecutive

vertices is minimized. We first review previous approaches for special classes of graphs, followed by

lower bounds and then a linear integer formulation for the general problem. We then propose a branch-

and-bound algorithm based on different lower bounds on the cutwidth of partial solutions. Addition-

ally, we introduce a Greedy Randomized Adaptive Search Procedure (GRASP) heuristic to obtain good

initial solutions. The combination of the branch-and-bound and GRASP methods results in optimal

solutions or a reduced relative gap (difference between upper and lower bounds) on the instances

tested. Empirical results with a collection of previously reported instances indicate that the proposed

algorithm is able to solve all the small instances (up to 32 vertices) as well as some of the large

instances tested (up to 158 vertices) using less than 30 minutes of CPU time. We compare the results of

our method with previous lower bounds, and with the best previous linear integer formulation solved

using Cplex. Both comparisons favor the proposed procedure.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Let GðV,EÞ be a graph with vertex set V ð9V9¼ nÞ and edge set
E ð9E9¼mÞ. A labeling or linear arrangement f, assigns the integers
{1,2,y,n} to the vertices of G in such a way that each vertex vAV
has a different label f ðvÞ (i.e., f ðvÞa f ðuÞ for all u,vAV where vau).
The cutwidth of v, with respect to f , CWf ðvÞ, is the number of edges
ðu,wÞAE satisfying f ðuÞr f ðvÞo f ðwÞ. Note that f ðuÞ ¼ f ðvÞ if and
only if u¼v. Then, the cutwidth of v is computed as:

CWf ðvÞ ¼ 9 ðu,wÞAE : f ðuÞr f ðvÞo f ðwÞ
� �

9: ð1Þ

Therefore, the vertex with label n has an associated cutwidth
of 0. Given f , the cutwidth of G is defined as:

CWf ðGÞ ¼max
vAV

CWf ðvÞ: ð2Þ

The optimum cutwidth of G, CWðGÞ, is defined as the minimum
CWf ðGÞ value over all possible labelings. In other words, the
cutwidth minimization problem consists of finding an f that
minimizes CWf ðGÞ over the set Pn of all possible labelings.

CWðGÞ ¼min
f APn

CWf ðGÞ: ð3Þ

Finding the optimum cutwidth is usually referred to as the
Cutwidth Minimization Problem (CMP). This is an NP-hard pro-
blem as stated in Gavril [13] even for graphs with a maximum
degree of three [19]. Practical applications of the CMP can be
traced back to the early seventies. Adolphson and Hu [1] used it as
the theoretical model to establish the number of channels in an
optimal layout of a circuit (see also [1,20]). More recent applica-
tions of this problem include network reliability [17], automatic
graph drawing [23] and information retrieval [2]. Despite of the
practical applicability of the CMP, researchers on heuristic opti-
mization have paid little attention to it. We have only found three
references concerning heuristic methods for this problem. Speci-
fically, a Simulated Annealing method [5], an Evolutionary Path
Relinking [28] and, more recently, a Scatter Search procedure
[24], which as far as we know, obtains the best results so far.

Figure 1.a is an example of an undirected graph with six
vertices and ten edges. A labeling of this graph is depicted in
Fig. 1.b, setting the vertices in a line in the labeling order as
commonly represented in the cutwidth problem. In this way,
since f ðAÞ ¼ 1, vertex A comes first, followed by vertex D (f ðDÞ ¼ 2)
and so on. We represent f with the ordering ðA,D,E,F,B,CÞ, mean-
ing that vertex A is located in the first position (label 1), vertex D

is located in the second position (label 2) and so on. In Fig. 1.b, the
cutwidth of each vertex is represented as a dashed line with its
corresponding value at the bottom. For example, the cutwidth of
vertex A is CWf ðAÞ ¼ 5, because the edges ðA,DÞ,ðA,EÞ,ðA,FÞ,ðA,BÞ
and ðA,CÞ have an endpoint in A labeled with 1, and the other
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endpoint in a vertex labeled with a value larger than 1. Similarly,
we can compute the cutwidth of vertex B, CWf ðBÞ ¼ 4, by counting
the appropriate number of edges (ðA,CÞ,ðD,CÞ,ðF,CÞ and ðB,CÞ).
Then, since the cutwidth of G,CWf ðGÞ, is the maximum of the
cutwidth of all vertices in V, in this particular example we obtain
CWf ðGÞ ¼ CWf Dð Þ ¼ 7, represented in the figure as a bold line with
the corresponding value at the bottom.

In this paper we propose a branch-and-bound algorithm for the
Cutwidth Minimization Problem. It basically consists of a systematic
enumeration of all its solutions (labelings) based on the definition of
partial solutions. We review the related literature on the CMP in
Section 2 and propose four new lower bounds in Section 3 that will
enable us to discard a large number of solutions in the enumeration
process. This latter section ends with a study of the dominance
among the lower bounds. In Section 4 we study the relative
dominance among nodes in the search tree. In Section 5 we
introduce a heuristic based on the Greedy Randomized Search
Procedure (GRASP) methodology to obtain an initial upper bound
for the CMP. The reader is referred to Resende and Ribeiro [27];
Festa and Resende [9] and Festa and Resende [10] for further details
concerning the GRASP methodology. In Section 6, we describe the
search tree and its associated strategies for an efficient enumeration
of the problem solutions, and the paper concludes with the
computational experiments and the associated conclusions.

2. Previous methods, bounds and formulations

The CMP has been optimally solved for some special classes of
graphs. For example, Harper [15] solved the cutwidth for hyper-
cubes, Chung et al. [4] presented an Oðlogd�2nÞ time algorithm for
the cutwidth of trees with n vertices and with maximum degree d.
Yannakakis [32] improved these results by giving an Oðnlog nÞ

time algorithm for the same kind of graphs. In particular, for a
complete t-ary tree with k-levels (heigh k), Tt,k, it holds that:

CWf ðTt,kÞ ¼
1

2
ðk�1Þðt�1Þ

� �
þ1, 8 kZ3: ð4Þ

Exact methods to obtain the optimal cutwidth of grids have
been proposed in Rolim et al. [30]. Specifically, for a grid Lw,hwith
width wZ2 and height hZ2, these authors proved that:

CWðLw,hÞ ¼
2, if w¼ h¼ 2

min wþ1,hþ1
� �

, otherwise
:

(
ð5Þ

Recently, Thilikos et al. [31] presented an algorithm to com-
pute the cutwidth of bounded degree graphs with small tree-
width in polynomial time. As far as we know, there is no previous
exact method for the CMP on general graphs, and all the previous
methods, as shown above, target special classes of graphs. How-
ever, we have identified four previous lower bounds and a linear
integer formulation that we describe in the following subsections.

2.1. Lower bounds for the CMP

Dı́az et al. [6], proposed two lower bounds for the CMP. The first
one is based on fundamental cuts and the second one in spectral
properties of graphs. The computation of the former is based on the
well-known max-flow min-cut theorem [11], which states that the
maximal flow value from an origin o to a destination d in a given
graph is equal to the minimal edge cut separating o and d (called a
fundamental cut). If we compute the value of the fundamental cut
for all the possible pairs ðo,dÞ in a given graph GðV,EÞ, the maximum
of these values is a lower bound of the CMP [6] that we denote as
LBFF . In mathematical terms:

CWðGÞZLBFF ¼max
o,dAV

cutðo,dÞ
� �

, ð6Þ

where cutðo,dÞ represents the size of the fundamental cut from
o to d.

Considering the Laplacian matrix associated to a graph, it is
possible to derive a lower bound for the CMP using its second
smallest eigenvalue [16]. Given a connected graph GðV,EÞ with
9V9¼ n, let l2 be the second smallest eigenvalue. The LBLM lower
bound can be computed as:

CWðGÞZLBLM ¼ l2

n
2

� �
n
2

� 	
n

: ð7Þ

Additionally, we can derive new lower bounds by studying the
relations of the CMP with other layout optimization problems.
Specifically, Dı́az et al., [6] presented an inequality between the
CMP and the Minimum Linear Arrangement problem, MinLA
[12,25], and another one between the CMP and the Edge Bisection
problem, EB [12]. Given a graph GðV,EÞwith 9V9¼ n, and a labeling
f, then:

LAf ðGÞrnUCWf ðGÞ, with f APn and ð8Þ

EBf ðGÞrCWf ðGÞ, with f APn: ð9Þ

where LAf ðGÞ and EBf ðGÞ are the values of the MinLA and EB
objective functions, respectively. Consequently, two additional
lower bounds, LBMinLA and LBEB can be derived:

CWðGÞZLBMinLA ¼
LAðGÞ

n
, ð10Þ

CWðGÞZLBEB ¼ EBðGÞ: ð11Þ

2.2. Integer programming model

Luttamaguzi et al. [18] proposed the following CMP linear
integer formulation based on the binary decision variables xk

i ,
with indices i,kA 1,2,. . .,nf g, specifying whether i is placed in
position k in the ordering. This binary variable takes on value
1 if and only if i occupies the position k in the ordering; otherwise

Fig. 1. (a) Graph example, (b) Cutwidth of G for f.
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