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1. Introduction

One of the most important tasks in data mining [116,121,240]
is supervised classification, which seeks procedures for classifying
objects in a set Q into a set C of classes. Each object ue Q has
associated a pair (x¥,y%), where xY, the predictor vector, takes
values on a set X, usually assumed to be a subset of RP, and y* e C
is the class membership of u. Hereafter, we will simply use the
term variable to refer to each component of the predictor vector.

Not all the information about the objects in Q2 is available: the
class membership c* is only known for those objects u in some
subset I C Q, called the training sample.

With this information, a classification rule is sought, i.e., a
function y : X—C, which assigns label y(x) € C to predictor vector
X, VX.

In its basic form, C consists of a finite set of nominal values,
without an intrinsic ranking (e.g. C = {benign, malign}), though
part of the theory extends to the case in which C is a finite set
equipped with an order relation, or a segment of the real line. In
this latter case, we would have a regression problem instead [216].

Supervised classification has been successfully applied in
many different fields. Examples are found in text categorization
[210], such as document indexing, webpage classification and
spam filtering; biology and medicine, such as classification of
gene expression data [102,245], homology detection [143], pro-
tein-protein interaction prediction [28,171], abnormal brain
activity classification [55] and cancer diagnosis [110,165];
machine vision [75,188]; agriculture [179]; or chemistry [60], to
cite a few fields and references.

We can argue that business applications have had a later start.
Despite of this, nowadays we can find many applications of
supervised classification in marketing, customer relationship
management, banking, among others [4,5,115,144,153,175]. Typi-
cal business applications are credit scoring [11], bankruptcy
[176], fraud detection [87], customer targeting [73], customer
loyalty [106,112], market basket analysis [61], recommender
systems [62], revenue management [122], services booking can-
cellations [203], country risk ratings [114], prediction of health
costs [24] or stock market forecast [103,156].

Mathematical optimization has played a crucial role in super-
vised classification [21,22,31,32,84,81,88,107,218,242]. Techni-
ques from very diverse fields within mathematical optimization
have been shown to be useful. As we will discuss in Section 3, and
already pointed out e.g. in [17], many of the optimization
problems encountered fall within the area of (smooth) Convex
Programming. However, other areas of mathematical optimiza-
tion play a notable role, among others, global optimization
[9,13,51,128,160,245], linear programming [94,158,205] mixed-
integer programming [25,39,50,77,220,228], nonsmooth optimi-
zation [7,13,44,51,222,223], multicriteria and multi-objective
programming [68,93,181,248] and robust optimization [224].

The success of mathematical optimization when applied to
supervised classification has one of its main exponents in Support
Vector Machines (SVMs) [30,72,229,230], a technique rooted in
statistical learning theory [229,230], which has proved to be one
of the state-of-the-art methods for supervised learning. For the
two-class case, SVM aims at separating both classes by means of a
hyperplane which maximizes the margin, i.e., the width of the
band separating the two sets. This geometrical optimization
problem can be written as a convex quadratic optimization
problem with linear constraints, in principle solvable by any
nonlinear optimization procedure. See also [18,40,108,177,113]
for introductory surveys on SVMs.

The purpose of this paper is to illustrate that mathematical
optimization is at the core of supervised classification methods.
Moreover, the variety of algorithmic tools which have been used

is rather wide, implying that the researchers in different branches of
mathematical optimization have ample room to translate their
expertise into this context, and they may find new domains of
applicability to existing mathematical optimization knowledge. We
stress that the aim of this paper is not to study in depth classifica-
tion methods, and we refer the reader to [36,121,125,197,201] for
further details. Instead, our aim is to illustrate the central role played
by mathematical optimization in such methods.

Due to its performance and its optimization context, we have a
special focus on SVMs. The two basic versions of SVM, namely, the
hard and soft margin approaches, are introduced. We then move
on to the embedding of the variable space into a feature space of
higher dimension, and the kernel version of SVM. We discuss the
optimization problem behind the SVM, as well as the mathema-
tical optimization techniques that have been proposed to solve it.
We devote the rest of the paper to extensions of SVM dealing with
critical issues such as interpretability, cost efficiency or robust-
ness, as well as dealing with data that may be unbalanced,
imprecise or unlabeled. We will show that many different
domains in mathematical optimization are needed to cope with
both the standard SVM formulation as well as the variants
addressing the properties mentioned above.

The remainder of the paper is organized as follows. In Section
2 we briefly discuss off-the-shelf classification methods and the
role of mathematical optimization. In Section 3 we introduce the
SVM, including the hard and soft versions as well as its kerneliza-
tion. In Section 4 we discuss the mathematical optimization
techniques proposed in the literature to build SVMs. In Section
5 we discuss critical modeling issues and how mathematical
optimization can help to incorporate them into the original SVM
model. Finally, conclusions are provided in Section 6.

2. Classification methods

Different classification methods have been proposed in the
literature. They mainly differ in the statistical assumptions made of
the data and the type of algorithms needed to construct the classifier.
In this section we review benchmarking classification methods
divided into three main categories: linear classifiers, nearest-neigh-
bor classifiers and classification trees. The methods proposed have a
deep geometrical flavor. For data sets in very low dimension,
computational geometry tools may be useful [23]. However, most
real world data sets of interest are in larger dimension, calling for
numerical rather than geometrical procedures.

Before presenting the benchmarking classification methods,
we briefly discuss two important ingredients in supervised
learning: the scoring functions, a general framework used to
describe the classifier, and the performance criteria used to
compare classification methods.

2.1. Scoring functions

The methods reviewed below are based on scoring functions:
for each ce(, a scoring function f.:X—R is built from the
training set I, and forthcoming objects with predictor vector x
are classified as members of the class y(x) with highest score. In
other words, the classifier is given by the function

Y(x) € arg maxf (x). (M

In case of ties, objects are randomly assigned to one of the classes
at which the maximum is attained.

The scoring function f,. ranks the objects, so that, the higher
the value of f.(x), the higher the likelihood that an object
represented by X is in class c.
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