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a b s t r a c t

Given an undirected graph G¼ ðV ,EÞ with weights on the edges, the max-bisection problem (MBP) is

to find a partition of the vertex set V into two subsets V1 and V2 of equal cardinality such that the

sum of the weights of the edges crossing V1 and V2 is maximized. Relaxing the equal cardinality,

constraint leads to the max-cut problem (MCP). In this work, we present a memetic algorithm for

MBP which integrates a grouping crossover operator and a tabu search optimization procedure. The

proposed crossover operator preserves the largest common vertex groupings with respect to the

parent solutions while controlling the distance between the offspring solution and its parents.

Extensive experimental studies on 71 well-known G-set benchmark instances demonstrate that our

memetic algorithm improves, in many cases, the current best known solutions for both MBP

and MCP.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Let G¼ ðV ,EÞ be an undirected graph with vertex set
V ¼ f1, . . . ,ng and edge set E� V � V , each edge fi,jgAE being
associated with a weight wijAZ. The well-known max-cut pro-
blem (MCP) is to partition the vertex set V into two disjoint
subsets V1 � V and V2 ¼ V\V1 such that the sum of the weights of
the edges from E that have one endpoint in each subset is
maximized, i.e., max

P
iAV1 ,jAV2

wij. MCP is one of the first 21 NP-
complete problems studied in [21]. When the two subsets V1 and
V2 are required to have the same cardinality (assuming that n is
even), the max-cut problem becomes the max-bisection problem
(MBP) which remains NP-complete in the general case [12]. Both
the max-bisection and max-cut problems have many applications
such as statistical physics, classification, social network analysis,
and VLSI design [5].

In this work, we are basically interested in the max-bisection
problem. Given max-cut is a relaxed max-bisection problem,
advances in solving max-bisection can benefit directly the solving
of the max-cut problem.

There are two related ‘dual’ partition problems known as
minimum cut and minimum bisection that aim to determine a
two-way partition of a graph while minimizing the sum of the
weights of the cutting edges (equal cardinality constraint is
required for minimum bisection). Notice that in the general
case, these minimization problems are different from the max-

bisection and max-cut problems considered in this work which

concern the two-way partition problems with the maximization

criterion. Finally, graph partition problems with the minimiza-

tion criterion have received much attention in the literature,

leading to several well-known public-domain software

packages like Chaco [18], Jostle [37], and Metis [22] (see [4]

for a recent review).
The computational challenge of the general max-cut and max-

bisection problems has motivated a variety of solution approaches
including exact methods, approximation algorithms and metaheur-
istic methods. Examples of approximation algorithms based on
semidefinite programming are described in [9,15,16,20,39]. These
approaches provide a performance guarantee, but do not compete
well with other methods in computational testing. Two recent
examples of exact methods are described in [24,34] which are based
on the cut and price approach and the branch and bound approach
respectively. While these methods have the theoretical advantage of
finding optimal solutions to a given problem, their applications are
generally limited to problems with no more than a few hundred
vertices.

For larger problem instances, a number of heuristics and
metaheuristics are often used to find approximate solutions of
good quality with a reasonable computing time. This includes for
the max-bisection problem deterministic annealing [6], Lagran-
gian net [38] and variable neighborhood search [25]. There are
many heuristics and metaheuristics for the max-cut problem
including simulated annealing [1], rank-2 relaxation heuristic
[5], GRASP [8], diversification driven tabu search [23], advanced
scatter search [28], global equilibrium search [35], and probabil-
istic tabu search [36].
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In this paper, we present a memetic algorithm for the max-
bisection problem (denoted by MAMBP). The proposed algorithm
integrates three complementary key components which jointly
ensure the high efficiency of the search process. First, to generate
promising new solutions, we introduce a dedicated crossover
operator which tries to preserve groups of vertices that are
shared by parent solutions. The design of this crossover operator
relies on the observation that, given a set of high quality
bisections of a graph, there is always a large number of vertices
grouped together throughout these bisections. Second, we
devise a tabu search optimization procedure for the purpose of
intensified search around a given solution. The tabu search
procedure uses a vertex move neighborhood and incremental
evaluation techniques for a fast neighborhood examination.
Finally, to maintain a healthy diversity of the population,
we employ a pool updating strategy which takes into
account both the solution quality and the distance between
solutions.

We show extensive experimental results on 71 well-known
G-set benchmark graphs (with 800 to 20000 vertices) in the
literature, showing that the proposed algorithm achieves highly
competitive results with respect to the existing max-bisection
heuristics. Moreover, when considering the relaxed max-cut
problem, the results produced by our MAMBP algorithm remain
highly competitive even when they are compared to those
obtained by dedicated max-cut algorithms; for 31 max-cut
instances, MAMBP improves the previous best known max-cut
solutions of the literature.

In the next section, the components of our memetic algorithm
are described, including the tabu search procedure, the crossover
operator and the pool replacement strategy. Section 3 is dedicated
to computational results and detailed comparisons with other
state-of-the-art algorithms in the literature. Section 4 investigates
several essential parts of the proposed memetic algorithm,
followed by concluding remarks given in Section 5.

2. Memetic algorithm

Memetic algorithms are known to be an effective approach in
solving a number of hard combinatorial optimization problems
[29,30,17]. Typically, a memetic approach repeatedly alternates
between a recombination (or crossover) operator to generate
solutions located in promising regions in the search space and a
local optimization procedure to search around the newly gener-
ated solutions. It is commonly admitted that the success of this
approach depends critically on the recombination operator. In
order to be effective, the recombination operator must be adapted
to the problem being solved and should be able to transmit
meaningful features from parents to offspring.

The general scheme of our memetic approach for MBP is
summarized in Algorithm 1. Basically, our memetic algorithm
begins with an initial population of solutions which are first
improved by the local optimization procedure based on tabu
search [14] (lines 1–5, Sections 2.2 and 2.3) and then repeats an
iterative process for a fixed number of times (generations)
(lines 6–13). At each generation, two solutions are selected to
serve as parents (Section 2.4). The crossover operator is applied to
the parents to generate a new offspring solution (Section 2.5)
which is further improved by the tabu search optimization
procedure (Section 2.3). Finally, we apply a quality-and-diversity
based rule to decide whether the improved offspring solution can
be inserted into the population (Section 2.6). In the following
subsections, we give more details on the components of our
memetic algorithm.

Algorithm 1. Memetic algorithm for the max-bisection problem.

Require: A weighted graph G¼ ðV ,E,oÞ, population size p

Ensure: The best solution In found

1: Pop¼ fI1, . . . ,Ipg’Initial_PopulationðÞ

2: In’BestðPopÞ

3: for i¼1 to p do
4: Ii’Tabu_SearchðIiÞ /n Section 2.3 n/
5: end for
6: while the stop criterion is not met do
7: Select randomly two solutions (parents) Ii and Ij from Pop

/n Section 2.4 n/
8: I0 ¼ Cross_OverðIi,IjÞ /n Section 2.5 n/

9: I0’Tabu_SearchðI0Þ /n Section 2.3 n/

10: if f ðI0Þ4 f ðInÞ then

11: In’I0 /n Update the best solution found so far n/
12: end if
13: Pop’Pool_UpdatingðI0,PopÞ /n Section 2.6 n/
14: end while

2.1. Search space and cost function

Recall that MBP consists of partitioning the vertex set V into two
subsets of equal cardinality such that the weights on the edges
between the two subsets are maximized. As such, we define the
search space explored by our memetic algorithm as the set of all
possible partitions of V into two disjoint subsets of equal cardinality
(also called bisections), i.e., O¼ ffV1,V2g : 9V19¼ 9V29¼ 9V9=2,
V1 \ V2 ¼ |g. Clearly, the size of O is given by Cð9V9,9V9=2Þ.

Given a bisection I¼ fV1,V2gAO, the cost function (also called
the fitness function) f(I) sums up the weights of the edges
between the two subsets V1 and V2 such that:

f ðIÞ ¼
X

iAV1 ,jAV2

wij ð1Þ

Then, for two bisections IAAO and IBAO, IA is better than IB if and
only if f ðIAÞ4 f ðIBÞ. The goal of the max-bisection problem is to find:

arg max
IAO

f ðIÞ

Given the size of the search space O, it is particularly challenging
to find an exact solution or an approximate solution of high quality.

2.2. Initial population

The solutions (individuals) of the initial population are created
as follows. For each individual, an equal sized partition is first
created at random and then improved by the tabu search procedure
(see Section 2.3). The improved solution is added into the popula-
tion if this solution is not already present in it. Otherwise, this
solution is discarded and a new random (equal sized) partition is
created. This procedure is iterated until the population is filled with
p solutions (p is the population size). This simple procedure
provides an initial population of diverse solutions of good quality.

2.3. The perturbation-based tabu search procedure

Our tabu search (TS) procedure aims to improve a given solution
I and plays the key role of local optimization within our memetic
algorithm. Basically, our tabu search procedure repeatedly alter-
nates between an intensification phase ensured by the basic tabu
search and a diversification phase controlled by a perturbation
mechanism [14]. Algorithm 2 describes this perturbation-based
tabu search procedure, whose components are detailed in the
following subsections.
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