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We study an online weighted interval scheduling problem on a single machine, where all intervals have

unit length and the objective is to maximize the total weight of all completed intervals. We investigate

how the function of finite lookahead improves the competitivities of deterministic online heuristics,

under both preemptive and non-preemptive models. The lookahead model studied in this paper is that

an online heuristic is said to have a lookahead ability of LD if at any time point it is able to foresee all

the intervals to be released within the next LD units of time. We investigate both competitive online

heuristics and lower bounds on the competitive ratio, with lookahead 0rLDr1 under the preemptive

model, and lookahead 0rLDr2 under the non-preemptive model. A method to transform a

preemptive lookahead online algorithm to a non-preemptive online algorithm with enhanced looka-

head ability is also given. Computational tests are performed to compare the practical competitivities of

the online heuristics with different lookahead abilities.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the online single machine interval scheduling problem,
there is one machine to schedule a set of weighted intervals with
various arrival time, and at any time point at most one interval
can be processed on the machine. The goal is to maximize the
total weight of all completed intervals. The problem can be
viewed as a special job scheduling problem in which each interval
is considered to be a job, and each job has, besides its weight, an
arrival time and a processing time. All the information of a job
becomes known upon its arrival, that is at the release time of the
job. If one does not start an interval immediately upon its arrival,
or if one aborts an interval before its completion, that interval is
lost. The interval scheduling problem arises naturally from
various real-life applications, including the assignment of trans-
ports to loading/unloading terminals, work planning for person-
nel, bandwidth allocation of communication channels, etc. [1].
Refer to [1,2] for recent surveys on offline and online interval
scheduling problems and their variants.

We use the concept of competitive ratio (see [3]) to measure
the performance of an online algorithm A, which is the worst case

ratio between the weight obtained by an optimal offline algo-
rithm OPT and the weight obtained by A, over all possible input
interval sequence I. More specifically, let AðIÞ and In denote the
schedules produced by A and by an optimal offline algorithm OPT,
on an input interval sequence I, respectively. Let 9AðIÞ9 and 9In9
denote the total weight of all the intervals in AðIÞ and In,
respectively. Then, the competitive ratio of A is defined as
c¼ supI9I

n9=9AðIÞ9, where the supremum is taken over all possible
input sequence I. If c is finite, then A is said to be competitive, or,
to be more specific, c-competitive.

For the general online weighted interval scheduling problem,
even on a single machine, Woeginger [4] showed that no deter-
ministic algorithm has a finite competitive ratio. Later, Canetti
and Irani [5] showed that the same also holds for randomized
algorithms. On the other hand, randomized competitive algo-
rithms do exist for special cases where there is a certain relation
between the length of an interval and its weight [6,7].

1.1. Lookahead and preemption

Offline algorithms have all the information of all intervals from
the very beginning, while online algorithms know nothing about
future intervals. Somewhat in between are the algorithms with
certain lookahead ability, which have knowledge of the intervals
in the near future. Usually the model with a finite lookahead
ability represents a more realistic situation. For example, a doctor
who responds to patients’ requests for office visits is unable to
know all requests in the future, however, it is possible for him/her
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to know the requests in the near future, say up to the next week,
via an appointment system. An online algorithm is said to have a
lookahead ability of LDZ0, if at any time t the algorithm has
information of all the intervals to be released in ½t,tþLD�, includ-
ing the release time and the weight of each interval.

An online interval scheduling problem is said to be under
preemptive model if it is allowed to abort the interval being
currently processed in order to start a new one, and in this case
the aborted interval is lost; otherwise the problem is said to be
under non-preemptive model, that is once the algorithm starts
processing an interval it must complete that interval.

The function of lookahead has applications in various schedul-
ing problems such as job-shop scheduling [8], transportation [9],
page caching [10], etc. There are generally two types of lookahead
models in the literature. The first lookahead model considers the
number of future jobs to be foreseen at any time. Mao and Kincaid
[11] studied a special lookahead model such that an online
scheduler foresees the next k¼1 released jobs at any time. In
the single machine environment with the objective to minimize
total completion time, they presented an online lookahead algo-
rithm and proved that it outperforms most online and offline
heuristics. Mandelbaum and Shabtay [12] considered the more
general lookahead model such that at any time the online
scheduler can foresee the next kZ1 jobs, while they considered
the scenario where jobs are released over list but not over time.
They assumed that jobs have different subsets of suitable
machines. In the multiple machine environment to minimize
the makespan, they showed that if there are only two types of
jobs then there exists an online algorithm producing the optimal
schedule, otherwise no such online algorithm exists. Coleman and
Mao [13] studied a scheduling problem on unrelated machines
with the objective of minimizing the average wait time. They
compared a non-lookahead algorithm with a lookahead algo-
rithm, and showed by simulation that the lookahead algorithm
saves up to 35% of the average wait time.

The second lookahead model considers a limited length of time
to be foreseen. Zheng et al. [14] investigated a single machine
scheduling problem with unit length jobs, such that at any time
the online algorithm can foresee the jobs to be released in the
next LDZ0 units of time. For the objective to maximize the total
number of completed jobs, they investigated both preemptive and
non-preemptive models and presented some upper and lower
bounds on the competitive ratio. When 1rLDo2, they gave an
optimal 3/2-competitive online algorithm for the non-preemptive
model. Li et al. [15] studied the problem of scheduling unit length
jobs on a parallel batching machine, aiming at maximizing the
number of early jobs. They proved that a lookahead ability with
0rLDo1 is useless, in the sense that it does not improve the
competitive ratio of an optimal online algorithm. For 1rLDo2,
they presented an online algorithm that is 4 and 5-competitive,
and proved lower bounds of 100/39 and 3/2 on the competitive
ratio, for unbounded and bounded batching models, respectively.
Woeginger [4] studied a single machine scheduling problem
without lookahead under the preemptive model, to maximize
the total weight of all completed jobs. In particular for the case
where all jobs have unit length, he proved that any online
deterministic algorithm cannot be better than 4-competitive.
Moreover, an optimal 4-competitive online algorithm is pre-
sented, which preempts any currently processed job to start a
newly arrived one, provided that the new job has a weight of at
least twice larger.

1.2. Our results

In this paper we study the online weighted interval scheduling
problem with the objective to maximize the total weight of all

completed intervals, and explore how limited lookahead
improves the performances of deterministic online heuristics.
We mainly focus on the second lookahead model introduced
above, and on the case where the processing time of all intervals
is of unit length.

Given an input interval sequence, let G be the set of all intervals
completed by an online algorithm. Adopting the three field notation
proposed by Graham et al. [16], we use 19rj,online,LD9

P
Jj AGwj to

denote the online interval scheduling problem with unit length
intervals under the non-preemptive model, where the online algo-
rithm has the ability of lookahead with LD units of time, and rj

denotes that the intervals have various release time. We use
19rj,online,pmtn,LD9

P
Jj AGwj to denote the same problem under

the preemptive model.
We investigate both competitive online algorithms and lower

bounds on the competitive ratio, with lookahead 0rLDr1 under
the preemptive model, and lookahead 0rLDr2 under the non-
preemptive model. Experimental tests are performed to compare
the practical competitivities of the online algorithms with differ-
ent lookahead abilities.

The rest of the paper is organized as follows. In Section 2, we
study the preemptive model. We first give a tight lower bound of
4 on the competitive ratio when 0rLDo1. For LD¼1, we present
a 3-competitive online algorithm and a lower bound of

ffiffiffi
2
p

on the
competitive ratio. In Section 3, we study the non-preemptive
model. We first observe a relation between the ability of looka-
head and the ability of preemption, for deterministic online
algorithms solving the interval scheduling problem. By applying
this observation we transform the algorithmic results in Section 2
and in [4] under the preemptive model into new online algo-
rithms under the non-preemptive model with enhanced looka-
head ability. We also discuss lower bounds on the competitive
ratio under these models. In particular, by applying a variant and
extension of the idea used in [4], we prove a tight lower bound of
4 on the competitive ratio for problem 19rj,online,LD¼ 19

P
Jj AGwj.

In Section 4, computational experiments are performed to com-
pare the practical performances of the online algorithms with
different lookahead abilities. We conclude our paper in Section 5.

2. The preemptive model with lookahead

In this section, we investigate two cases under the preemptive
model: 0rLDo1 and LD¼1.

2.1. The case where 0rLDo1

For the case where the time length of lookahead is strictly less
than one, we have the following negative result.

Theorem 2.1. For problem 19rj,online,pmtn,LD9
P

Jj AGwj, if the

length of lookahead is strictly less than one, i.e., 0rLDo1, then

no deterministic online algorithm has a worst case competitive ratio

better than 4.

The theorem can be proved in almost the same way as the
proof for the lower bound in Theorem 4.4 in Woeginger [4].
The only difference is that for the set of intervals S1 ¼

fJ1;1, ,J1;2, . . . ,J1,n1
g presented to the online algorithm in the first

step, we have an extra requirement r1,n1
�r1;1o1�LD, where r1;1

and r1,n1
are the release time of J1;1 and J1,n1

, respectively. This
requirement insures that when an online algorithm decides
whether to start processing an interval in S1, it cannot foresee
the release of any interval in set S2, which is to be released in the
second step. It can be verified that similarly, when an online
algorithm decides whether to start processing an interval in Si

(to be released in Step i), it cannot foresee the release of any
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