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This paper deals with the single machine total tardiness problem, and proves that if the job sequences

produced by two heuristics, named as Time Forward and Time Backward algorithms, have the same

starting and ending job subsequences, then there exists an optimal job sequence with the starting and

ending job subsequences. The computation experiments show that there is a significant improvement

of the running time of a branch and bound algorithm with the incorporation of the new property.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The single machine total tardiness problem (TTP) can be stated
as follows. There is a set N¼ f1;2, . . . ,ng of n jobs to be processed
non-preemptively on a continuously available single machine
which can handle only one job at a time. Job i ðiANÞ becomes
available at time zero, requires a processing time pi ðpi40Þ and
has a due date di ð�1odioþ1Þ. When a sequence s¼
ðsð1Þ,sð2Þ, . . . ,sðnÞÞ of the jobs in N is prescribed, then for each
job sðiÞ, its completion time CsðiÞ ¼

P
kr ipsðkÞ and tardiness

TsðiÞ ¼max f0,CsðiÞ�dsðiÞg can be computed. The task is to find a
job sequence s such that the total tardiness

TTðsÞ ¼
Xn

i ¼ 1

TsðiÞ ¼
Xn

i ¼ 1

maxf0,CsðiÞ�dsðiÞg

is minimized.
TTP is NP-hard in the ordinary sense [5] and most optimization

algorithms use a combination of dynamic programming (DP) and
branch and bound (BB) methods. They proceed by breaking the
problem into subproblems by the decomposition principle intro-
duced by Lawler [11], and strengthened by Potts and Van
Wassenhove [16], Szwarc [17] and Chang et al. [2]. At the same
time, the dominance conditions derived by Emmons [6] are used
extensively to curtail the solution space. The most effective
algorithms are by Szwarc et al. [18] and by Tansel et al. [19] that
can both solve instances with up to 500 jobs. Szwarc et al.
considered several combinations of methods like adding lower
bounds, using modified due date in the decomposition position
rule, and controlling subproblem list by only storing subproblems

that need branching. They reported that SDD2=di which only
utilized the last method was the most efficient algorithm among
other combinations for 500 job instances. Tansel et al. defined a
so-called b-sequence in which the jobs are ordered in non-
decreasing order of their modified due dates obtained through
the use of Emmons’ conditions, and proved that the b-sequence is
optimal under some conditions. Then, for each subproblem, the
sequence can be fixed as the b-sequence if the corresponding
conditions are fulfilled.

The most well-known heuristic for TTP is by Wilkerson and
Irwin [21], and then simplified by Baker and Bertrand [1], Lin [13],
Panwalkar et al. [15]. Since the heuristic arranges the jobs one by
one from time zero onwards using job pairwise interchanges, Yu
[24] named it as Time Forward algorithm (TF). Naidu et al. [14]
gave a sufficient condition under which TF is optimal. Yu [22]
presented a heuristic, named by Time Backward algorithm (TB),
which arranges the jobs one by one in the reverse order of time
using job pairwise interchange rule. Note that Fadlalla et al. [7]
also described another version of TB.

Some meta-heuristics for TTP have also been proposed in these
years. The recent one is by Cheng et al. [3] that incorporates some
elimination rules into an ant colony optimization algorithm.
However, as pointed out by Koulamas [9], meta-heuristics do
not perform better than those algorithms based on the decom-
position principle for TTP, and perhaps they are more suitable to
scheduling problems with less structure. Especially, based on the
decomposition principle, a fully polynomial time approximation
scheme (FPTAS) for TTP has been presented by Lawler [12], and
then its computational complexity was improved by Kovalyov
[10]. See Koulamas [8,9] and Sen et al. [20] for other researches
related to the single machine total tardiness problem.

In this paper, we prove that if the job sequences produced by
heuristics TF and TB have the same starting and ending job
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subsequences, then there exists an optimal job sequence with the
starting and ending job subsequences. Also, we perform the
computation experiments and show that there is a significant
improvement of the running time of BB algorithms with the
incorporation of the new property.

The rest of the paper is organized as follows. Section 2
introduces the related work that stimulates our research.
Section 3 deals with the property we propose. Section 4 presents
a BB algorithm with the incorporation of the new property. The
performance of the BB algorithm is evaluated in Section 5. Section
6 includes some concluding remarks.

2. Preliminaries

In this section we introduce some previous work that stimu-
lates our research.

2.1. Consistent partial order

A partial order on the job set N can be described by a subset Q

of N2
¼ fði,jÞ9i,jANg, where ði,jÞAQ ðia jÞmeans that job i precedes

job j. Note that ði,iÞAQ always holds from the reflexivity of partial
order, and Q0 ¼ fði,iÞ9iANg is called a null partial order. Q is called
a consistent partial order (CPO) of TTP if there is an optimal
sequence s such that s�1ðiÞos�1ðjÞ holds for any ði,jÞAQ ðia jÞ,
where s�1ðiÞ is defined as the position of job i in s, and s�1ðjÞ is
the position of job j. Obviously, appending a strong CPO to N can
reduce the computational burden when we solve TTP especially
by branch and bound algorithms.

Let CPO(N) stand for the collection of all consistent partial
orders on N. Given Q ACPOðNÞ, we define C�i ðQ Þ ¼

P
ðs,iÞAQ ps and

Cþi ðQ Þ ¼
P
ði,sÞ=2Q psþpi for any job iAN. C�i ðQ Þ and Cþi ðQ Þ are called

the earliest and the latest completion time of job i based on Q.
Note that C�i ðQ0Þ ¼ pi and Cþi ðQ0Þ ¼

P
kANpk. Also, we define three

subsets of N2 as follows:

ICðQ Þ ¼ fði,jÞ9ia j, pirpj ,dirmaxfdj,C
�

j ðQ Þgg,

BSðQ Þ ¼ fði,jÞ9ia j, djZmin fCþi ðQ Þ,max fdi,C
þ

i ðQ Þ�pjgg,

DCðQ Þ ¼ ICðQ Þ [ BSðQ Þ:

Emmons [6] proved that if ði,jÞADCðQ Þ, then there exists an
optimal sequence s for TTP with s�1ðiÞos�1ðjÞ.

Assume that Q ACPOðNÞ, RDDCðQ Þ and fðj,iÞ9ði,jÞARg \ Q ¼ |.
Let Q � R be the partial order obtained from Q by adding the pairs
in R and the pairs implied by transitivity. Q � R is called an
augmented partial order from Q. Yu [23] proved that any
augmented partial order obtained from the null partial order Q0

by a series of augmentations is a CPO, i.e., the following lemma
holds.

Lemma 1. Let RkDDCðQkÞ and Qkþ1 ¼Qk � Rk for k¼ 0;1,2, . . ..
Then each Qk is a CPO.

2.2. Heuristics

The heuristics TF and TB are as follows [1,13,22].

Time Forward Algorithm (TF).

Step1 Let t¼0, k¼1, and S¼N¼ f1;2, . . . ,ng.
Step2 Determine sðkÞ such that max fpsðkÞ,dsðkÞ�tg ¼miniA S

maxfpi,di�tg.
Step3 If k¼n, then output the sequence s and stop, else let

t¼ tþpsðkÞ, S¼ S\fsðkÞg, k¼ kþ1 and return to Step 2.

Yu and Liu [25] proved that TF produces a locally optimal
sequence with respect to the forward shifting neighborhood,
which implies that no job in the sequence can be moved forward
while keeping the other jobs unchangeable to generate a
sequence with better performance. They also proved the worst-
case performance ratio of TF is n=2, where the bound is tight.
Given an instance I of TTP, let TTH

ðIÞ represent the total tardiness
generated by heuristic H and TTn

ðIÞ denote the minimum total
tardiness. Then, the worst-case performance ratio associated with
heuristic H, is defined as supIfTTH

ðIÞ=TTn
ðIÞg, for all instances I.

Time Backward Algorithm (TB).

Step1 Let t¼
Pn

i ¼ 1 pi, k¼n, S¼N¼ f1;2, . . . ,ng.
Step2 Let H¼ fl9 dlþplZt, lASg.
Step3 If Ha|, set sðkÞ as the job with largest due date in H; if

H¼ |, set sðkÞ as the job with longest processing time in
S.

Step 4 If k¼1, then output the sequence s and stop, else let
t¼ t�psðkÞ, S¼ S\fsðkÞg, k¼ k�1 and return to Step 2.

Yu [22] proved that TB produces a locally optimal sequence
with respect to the backward shifting neighborhood, and its
worst-case performance ratio is 2n�2 that is tight.

Generally, TF performs better than TB. Since TF arranges the
jobs from time zero onwards, TB arranges the jobs in the reverse
order of time, and they both work according to the job pairwise
interchange rule, we guess they are optimal when the resulting
sequences are the same. We confirm the guess in the next section.
In fact, we prove a stronger property that can be used in a BB
algorithm.

3. A theoretical development

Let s1 ¼ ab1g and s2 ¼ ab2g be the job sequences produced by
TF and TB, respectively. That is to say, the first 9a9 jobs in s1 and
s2 are the same, and so are the last 9g9 jobs. We will show that
TTP has an optimal sequence of the form abg, where b is a
permutation of the jobs in b1 (or equivalently in b2).

Lemma 2. Assume that job i is processed before job j by both TF and TB,
and Q ACPOðNÞ. If

P
k: s�1

1
ðkÞos�1

1
ðiÞpkrC�j ðQ Þ�pj and

P
k: s�1

2
ðkÞos�1

2
ðjÞ

pkZCþi ðQ Þ�pj, then ði,jÞADCðQ Þ.

Proof. Since i is processed before j by TF, we have

max pi,di�
X

k:s�1
1
ðkÞos�1

1
ðiÞ

pk

8<
:

9=
;rmax pj,dj�

X
k:,s�1

1
ðkÞos�1

1
ðiÞ

pk

8<
:

9=
;:

If pirpj, then

dirmax pjþ
X

k:s�1
1
ðkÞos�1

1
ðiÞ

pk,dj

8<
:

9=
;rmaxfC�j ðQ Þ,djg:

Thus, ði,jÞA ICðQ Þ:

If pi4pj, then dirdj. And by TB

H¼ l 9 s�1
2 ðlÞrs�1

2 ðjÞ, dlþplZ

X
k:s�1

2
ðkÞrs�1

2
ðjÞ

pk

8<
:

9=
;a|;

otherwise, job i should be processed on position s�1
2 ðjÞ rather than

job j since job i has a longer processing time. Then, jAH, and

djZ

X
k:s�1

2
ðkÞos�1

2
ðjÞ

pkZCþi ðQ Þ�pj:

Thus, ði,jÞABSðQ Þ: &
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