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This paper deals with the multi-item capacitated lot-sizing problem with setup times and lost sales.

Because of lost sales, demands can be partially or totally lost. To find a good lower bound, we use a

Lagrangian relaxation of the capacity constraints, when single-item uncapacitated lot-sizing problems

with lost sales have to be solved. Each subproblem is solved using an adaptation of the OðT2
Þ dynamic

programming algorithm of Aksen et al. [5]. To find feasible solutions, we propose a non-myopic

heuristic based on a probing strategy and a refining procedure. We also propose a metaheuristic based

on the adaptive large neighborhood search principle to improve solutions. Some computational

experiments showing the effectiveness and limitation of each approach are presented.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Production planning consists in deciding how to transform raw
materials or semi-finished products into final products in order to
satisfy demands on time and at minimal cost. Determining lot
sizes is a crucial decision in production planning; which consists
in calculating the quantity to produce for each item at each time
period. In industrial contexts, several constraints may complicate
the problem. In particular, the fact that items need a resource
makes the problem more complex. Indeed, this can lead to the
impossibility to entirely satisfy demands when there is not
enough capacity. Such an amount of unsatisfied demands is
referred to as shortage on demand or lost sales.

In this paper, we address the single-level, single-resource,
Multi-item Capacitated Lot-Sizing problem with setup times and
Lost Sales called MCLS-LS. MCLS-LS consists in planning the
production of N items over a horizon of T periods in order to
satisfy time-varying demands. Demands are given for each item
at each period. The different parameters of the problem are as
follows. Producing a unit of item i in period t incurs a production
cost ait and requires vit units of the total capacity Ct. The holding
cost of a unit of product i at the end of period t is git . Product
dependent setup costs bit and setup times fit are incurred at each
period where production takes place. The problem has the
distinctive feature of allowing demand shortages (also called lost
sales). Lost sales are particularly relevant in problems with tight
capacities. Indeed, when the available resources are not sufficient
to produce the total demand, the capacity is spread among the

items by minimizing the total lost sales. Thus, we introduce in the
model a unitary lost sales cost jit for item i at period t. These
costs should be viewed as penalty costs and their values are high
compared to other unitary cost components. The objective is to
minimize total production, setup, holding, and lost sale costs.

The classical Multi-item Capacitated Lot-Sizing problem with
setup times (MCLS) is strongly NP-Hard [10]. Even the single item
capacitated lot-sizing problem is NP-Hard in the ordinary
sense [8]. The MCLS-LS problem is then NP-Hard. In fact, if we
set lost sale costs to sufficiently high values, the problem to solve
becomes the classical MCLS problem. Lot-sizing problems have
been studied for five decades, with numerous references dealing
with capacitated lot-sizing problems. For a recent survey on
lot-sizing problems, the reader can refer to [17,18] for Multi-item
Capacitated Lot-Sizing problems, and [9] for single-item capaci-
tated lot-sizing problems.

Different approaches were addressed in the literature in order
to find near optimal heuristic solutions for the MCLS problem.
Trigeiro et al. [26] were among the first to solve the MCLS
problem. They propose a smoothing heuristic based on Lagran-
gian relaxation of the capacity constraints. At each step of the
subgradient method, a heuristic is called to obtain a feasible
solution from the current Lagrangian lower bound. Belvaux and
Wolsey [6], Pochet and Wolsey [24] and Miller et al. [20] propose
exact methods to solve MCLS problems by strengthening the
Linear Programming (LP) relaxation using valid inequalities.
Recently, Degraeve and Jans [12] propose a new Dantzig–Wolfe
reformulation and branch-and-price algorithm for the MCLS
problem.

There has been little research on lot-sizing problems with
demand shortages or lost sales. Sandbothe and Thompson [25]
introduced the concept of shortages to the classical uncapacitated
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single-item lot-sizing problem, they called it stockouts.
The authors propose an OðT3

Þ dynamic programming algorithm
to solve the problem optimally. Aksen et al. [5] address the same
problem but called this concept lost sales. They improved the
previous complexity by proposing an OðT2

Þ dynamic program-
ming algorithm. Hwang and van den Heuvel [14] propose an OðT4

Þ

dynamic programming algorithm to solve optimally the classical
uncapacitated single-item lot-sizing problem with lost sales,
upper bounds on stocks and concave costs. They also propose
an algorithm in OðT log TÞ and O(T) to solve respectively the
uncapacitated lot-sizing problem with lost sales and non-spec-
ulative cost structure, and the same problem with nonincreasing
selling prices. Absi et al. [4] address the uncapacitated single-item
lot-sizing with time windows, early productions, lost sales and
backlogging. The authors develop OðT2

Þ solving algorithms for
different variants of this problem.

Berk et al. [7] study the single-item lot-sizing problem for a
warm/cold process with immediate lost sales by defining some
properties of the optimal solutions. Recently, Absi and Kedad-
Sidhoum [2] propose a branch-and-cut algorithm to solve the
MCLS-LS problem with production time windows. They use a
generalized version of Miller et al. [20] valid inequalities to
strengthen the LP relaxations in the branch-and-bound tree.
Absi and Kedad-Sidhoum [1,3] develop respectively MIP-Based
heuristics to solve the MCLS-LS problem with additional indus-
trial constraints and a Lagrangian relaxation approach to solve the
MCLS-LS problem with safety stocks.

The main contributions of this paper are twofold. First, we
adapt the dynamic programming algorithm of Aksen et al. [5] to
take any cost structure into account and use this algorithm in a
Lagrangian relaxation approach to find good lower bounds.
Second, we develop new Lagrangian heuristics based on a
smoothing algorithm and a probing strategy to find near-optimal
solutions. Generally, the smoothing heuristics that are presented
in the literature are myopic. We show through our computational
experiments (Section 5.1) that these heuristics are no longer
competitive with recent versions of commercial mathematical
programming solvers. The algorithm proposed in this paper is
non-myopic, i.e. a probing heuristic is used at each step to
evaluate promising moves. It provides better results than classical
smoothing heuristics. We also show the efficiency of the adaptive
local search principle in improving lot-sizing solutions. This
principle already shows its performance in solving several vehicle
routing problems [22,23].

Section 2 describes MIP formulations of the MCLS-LS problem.
In Section 3, we present a Lagrangian relaxation approach based
on the relaxation of capacity constraints, an adaptation of the
dynamic program proposed by Aksen et al. [5] to solve the single
item uncapacitated version of MCLS-LS, and a subgradient
method. Section 4 describes the principle of the Lagrangian
heuristics based on a probing strategy as well as a refining
procedure. We propose 14 neighbor operators and integrate them
in a metaheuristic (Adaptive Local Search) based on the selection
principle of the adaptive large neighborhood search [22] to
improve solutions. Computational experiments are shown in
Section 5 to evaluate the effectiveness and limit of our proce-
dures. Finally, Section 6 provides a short conclusion and future
research directions.

2. Mathematical formulation of the MCLS-LS problem

Different mathematical formulations were presented in the
literature for the MCLS problem. Two mathematical formulations
of the MCLS-LS problem are recalled in this section. The first one
is a generalization of the classical formulation of the MCLS

problem usually called aggregate formulation. The second formu-
lation is based on the facility location formulation initially
proposed by Krarup and Bilde [19] for the uncapacitated single-
item problem, which is often called disaggregate formulation.

2.1. An aggregate formulation

In the following, we present an aggregate formulation of the
MCLS-LS problem. This formulation is addressed in several papers
such as Trigeiro et al. [26]. The notations are given below:

Sets and indices

T: Number of periods.
T ¼ f1, . . . ,Tg.
N: Number of items.
I ¼ f1, . . . ,Ng.
i: index of an item, i¼ 1, . . . ,N.
t: index of a period, t¼ 1, . . . ,T .

Parameters:

dit: demand for item i at period t.
Ct: available capacity at period t.
fit: setup time for item i at period t.
vit: unitary resource consumption for item i at period t.
ait: production unit cost for item i at period t.
bit: setup cost for item i at period t.
git: inventory unit cost for item i at period t.
jit: lost sale unit cost for item i at period t.

Variables:

xit: the quantity of item i produced in period t.
yit: binary setup variable, equal to 1 if item i is produced at
period t (i.e. xit 40Þ, and 0 otherwise.
sit: the inventory level of item i at the end of period t.
rit: the lost sales of item i at period t.

The aggregate formulation (noted AGG) of the MCLS-LS model
is stated as follows:

min
X

iAI ,tAT
ðaitxitþbityitþjitritþgitsitÞ ð1Þ

si,t�1þritþxit ¼ ditþsit 8i,t ð2Þ

X
iAI
ðvitxitþ f ityitÞrct 8t ð3Þ

xit rMityit 8i,t ð4Þ

rit rdit 8i,t ð5Þ

xit ,rit ,sit Z0 8i,t ð6Þ

yit Af0;1g 8i,t ð7Þ

The objective function (1) minimizes the total cost that
aggregates production, setup, inventory and shortage costs.
Constraints (2) are the inventory balance equations. Constraints
(3) are the capacity constraints; the overall consumption must be
lower than or equal to the available capacity. Constraints (4)
relate the binary setup variables to the continuous production
variables. Mit can be set to minf

PT
t0 ¼ t dit0 ,ðct�f itÞ=vitg. Constraints

(5) define upper bounds on the lost sale variables. The domain
definitions of the variables are defined in Constraints (6) and (7).
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