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Most of the existing multi-objective genetic algorithms were developed for unconstrained problems,

even though most real-world problems are constrained. Based on the boundary simulation method and

trie-tree data structure, this paper proposes a hybrid genetic algorithm to solve constrained multi-

objective optimization problems (CMOPs). To validate our approach, a series of constrained multi-

objective optimization problems are examined, and we compare the test results with those of the well-

known NSGA-II algorithm, which is representative of the state of the art in this area. The numerical

experiments indicate that the proposed method can clearly simulate the Pareto front for the problems

under consideration.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Many real-world problems involve the simultaneous optimiza-
tion of several intrinsically conflicting objectives. For example, when
designing a software system, we always hope to reduce develop-
ment costs and to improve the performance, stability, scalability and
re-usability of the final products. Generally, there is no single perfect
solution that satisfies all the objectives simultaneously because they
are intrinsically in conflict with each other. Mathematically, this
type of problem can be formulated as a multi-objective optimization
problem (MOP).

Traditional mathematical programming techniques have some
limitations when solving MOPs. Most of them depend on the shape
of the Pareto front and only generate one Pareto solution from
each run. Thus, several runs (with different parameter settings) are
generally required to generate a Pareto solution set; however,
sometimes different parameter settings may generate similar results.
In such circumstances, generating a Pareto solution set will be very
computationally expensive.

Genetic algorithms (GAs) are a robust and efficient optimiza-
tion technique based on the mechanism of natural selection and
natural genetics [1]. One of the important features of GAs is that
they are a population-based search technique. Instead of moving

from one single point to another like traditional mathematical
programming techniques, GAs always maintain and manipulate
a solution set (population). This feature makes it possible to
generate a Pareto solution set in a single run. Furthermore, GAs
work on the function evaluation alone, which means no other
information about the problem under consideration is required.
Because of these advantages, GAs were recognized as potentially
well-suited to MOPs. In addition, most of the existing multi-
objective optimization techniques are based on GAs [24], and
MOPs may be an area where GAs can distinguish themselves from
other competitors [18].

However, GAs also have some limitations. GAs essentially are an
unconstrained optimization technique. In other words, GAs do not
have any explicit constraint-handling mechanism. When GAs are
applied to constrained optimization problems, the traditional genetic
search operators (e.g., crossover and mutation) may produce infea-
sible points (individuals). Therefore, a major research issue is how
to handle the constraints when applying GAs to solve constrained
optimization problems. In our previous research, we proposed a
boundary simulation method to solve constrained single-objective
optimization problems (CSOPs) [69]. In this paper, we combine the
boundary simulation method with two specially designed trie-like
data structures to form a hybrid genetic algorithm to solve con-
strained multi-objective optimization problems (CMOPs).

The structure of this paper is as follows. Section 2 provides some
basic concepts and definitions. Section 3 reviews the literature,
providing a brief introduction to status of current researches on this
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topic and briefly describing the boundary simulation method and
the trie-tree data structure. Section 4 describes the proposed rtrie-
tree data structure and the rtrie-based initialization and selection
operators. Section 5 proposes an atrie-tree data structure and an
atrie-based archive operator that can be used to efficiently maintain
the archive (external population). Section 6 proposes a new hybrid
genetic algorithm for CMOPs. In Section 7, the proposed method is
applied to a series of test problems to investigate its feasibility and
efficiency. Finally, our conclusions and some possible directions for
future research are presented in Section 8.

2. Basic concepts and definitions

In this study, we concentrate on CMOPs which can be repre-
sented as follows:

Minimize f ðxÞ ¼ ðf 1ðxÞ,f 2ðxÞ, . . . ,f kðxÞÞ

Subject to
gjðxÞr0, j¼ 1,2, . . . ,m,

xl
irxirxu

i , i¼ 1,2, . . . ,n,

(
ð1Þ

where f ðxÞ ¼ ðf 1ðxÞ,f 2ðxÞ, . . . ,f kðxÞÞ is the objective functions, gj(x) is
the j-th inequality constraint, x¼ ðx1,x2, . . . ,xnÞ is the decision
vector, xi

l and xi
u is the lower and upper bound of the decision

variable xi, respectively.
It is important to emphasize the following assumptions.

� The feasible region is connected.
� Only inequality constraints are involved.
� All decision variables have upper and lower bounds.

Generally, there are three types of constraints: linear inequality,
nonlinear inequality and nonlinear equality constraints, as linear
equality constraints can be easily converted to and added into other
type constraints. In the remainder of this paper, ‘‘inequality con-
straints’’ will refer to linear and nonlinear inequality constraints,
while ‘‘equality constraints’’ will only refer to nonlinear equality
constraints.

For single-objective optimization problems (SOPs), the optimal
solution is clearly defined; however, this is not the case for MOPs.
Unlike SOPs, MOPs generally have not one but a set of compro-
mise solutions that are equally good in some sense (called the
Pareto solution). Consider the general model equation (1), with
the following definitions.

Definition 1. The feasible region is defined by the following
expression:

F ¼ x¼ ðx1,x2, . . . ,xnÞ
gjðxÞr0, j¼ 1,2, . . . ,m,

xl
irxirxu

i , i¼ 1,2, . . . ,n:

�����
( )

ð2Þ

Definition 2. Given two vectors x and y, we say that xry if xiryi

for i¼ 1, . . . ,n. If xry and xay then x dominates y (denoted by
x!y).

The classical Pareto dominance definition and related defini-
tions are as follows.

Definition 3. We say that a vector of decision variables xAX is
non-dominated with respect to X , if there does not exist another
x0AX such that f ðx0Þ!f ðxÞ.

Definition 4. We say that a vector of decision variables xnAF is
the Pareto optimal, if it is non-dominated with respect to F .

Definition 5. The Pareto optimal set Pn is defined by

Pn ¼ fxAF 9x is the Pareto optimalg: ð3Þ

Definition 6. The Pareto front PF n is defined by

PF n ¼ ff ðxÞ9xAPng: ð4Þ

Based on these classical definitions discussed above, we propose
the following definition of reasonable Pareto dominance.

Definition 7. Given two vectors x and y, we say that x reasonably

dominates y (denoted by x!0y) if the following conditions are
satisfied.

� x and y do not dominate each other according to the classical
Pareto dominance definition.
� There exists at least one i such that f ðyÞi�f ðxÞi4a140, and for

other i¼ 1, . . . ,k, 9f ðxÞi�f ðyÞi9oa2,

where a1 and a2 are the reasonable parameters that can be
defined by decision makers according to the specific application.
The physical meanings of the reasonable dominance definition
and the reasonable parameters are clear. If x reasonably dominates

y (x!0y), then x and y do not dominate each other; in at least one
respect y is worse than x, while in all other respects x and y are
similar. For example, in Fig. 1, a, b and c do not dominate each
other according to the classical Pareto dominance definition;
however, a reasonably dominates b and c; in addition, we say a

reasonably dominates b and c in the y2 and y1 directions, respec-
tively. Furthermore, all the points falling in the shallows are
reasonably dominated by a.

In most cases, b and c should be reasonably ignored by decision
makers, when comparing a, b and c, even though a does not
dominate b and c according to the classical Pareto dominance
definition. Furthermore, we can easily define the reasonable Pareto

optimal set and the reasonable Pareto front based on the reasonable
dominance definition. Due to limitations of space and their
simplicity, these derivative definitions are omitted.

A Pareto optimal set is a set of solutions that are non-
dominated with respect to each other. Moving from one Pareto
optimal solution to another always implies making a certain
sacrifice in some objectives to achieve a certain improvement in
other objectives. The ultimate goal of a multi-objective optimiza-
tion algorithm is to identify the solutions in the Pareto optimal
set. However, for most MOPs, identifying the entire Pareto
optimal set is practically impossible due to its size. A more
practical computation strategy is to generate a non-dominated
solution set to approximate the Pareto optimal set.

With these concerns in mind, a multi-objective optimization
algorithm should achieve the following objectives.

� The resulting non-dominated solution set should converge at
the Pareto front.

Fig. 1. Reasonable dominance relationship.
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