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a b s t r a c t

In this paper we introduce four scenario Cluster based Lagrangian Decomposition procedures for

obtaining strong lower bounds to the (optimal) solution value of two-stage stochastic mixed 0–1

problems. At each iteration of the Lagrangian based procedures, the traditional aim consists of

obtaining the solution value of the corresponding Lagrangian dual via solving scenario submodels

once the nonanticipativity constraints have been dualized. Instead of considering a splitting variable

representation over the set of scenarios, we propose to decompose the model into a set of scenario

clusters. We compare the computational performance of the four Lagrange multiplier updating

procedures, namely the Subgradient Method, the Volume Algorithm, the Progressive Hedging

Algorithm and the Dynamic Constrained Cutting Plane scheme for different numbers of scenario

clusters and different dimensions of the original problem. Our computational experience shows that

the Cluster based Lagrangian Decomposition bound and its computational effort depend on the number

of scenario clusters to consider. In any case, our results show that the Cluster based Lagrangian

Decomposition procedures outperform the traditional Lagrangian Decomposition scheme for single

scenarios both in the quality of the bounds and computational effort. All the procedures have been

implemented in a Cþþ experimental code. A broad computational experience is reported on a test of

randomly generated instances by using the MIP solvers COIN-OR (2010, [18]) and CPLEX (2009, [17]) for

the auxiliary mixed 0–1 cluster submodels, this last solver within the open source engine COIN-OR. We

also give computational evidence of the model tightening effect that the preprocessing techniques, cut

generation and appending and parallel computing tools have in stochastic integer optimization. Finally,

we have observed that the plain use of both solvers does not provide the optimal solution of the

instances included in the testbed with which we have experimented but for two toy instances in

affordable elapsed time. On the other hand the proposed procedures provide strong lower bounds (or

the same solution value) in a considerably shorter elapsed time for the quasi-optimal solution obtained

by other means for the original stochastic problem.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this work we consider a general two-stage stochastic mixed
0–1 problem. The uncertainty is modeled via a finite set of
scenarios o¼ 1, . . . ,9O9, each with an associated probability of
occurrence wo, oAO. The traditional aim in this type of problems
is to solve the so-called Deterministic Equivalent Model (DEM),
which is a mixed 0–1 problem with a special structure, see e.g.,
[22] for a good survey of some major results in this area obtained
during the 90s and beyond. A Branch-and-Bound algorithm for

solving problems having mixed-integer variables in both stages is
designed in [5], among others, by using Lagrangian relaxation for
obtaining lower bounds to the optimal solution of the original
problem. A Branch-and-Fix Coordination (BFC) methodology for
solving such DEM in production planning under uncertainty is
given in [1,2], but the approach does not allow continuous first
stage variables or 0–1 second stage variables. We propose in [6,7]
a BFC algorithmic framework for obtaining the optimal solution of
the two-stage stochastic mixed 0–1 integer problem, where the
uncertainty appears anywhere in the coefficients of the 0–1 and
continuous variables in both stages. Recently, a general algorithm
for two-stage problems has been presented in [23].

We study in [11] several solution methods for solving the dual
problem corresponding to the Lagrangian Decomposition (LD) of
two-stage stochastic mixed 0–1 models. At each iteration of these
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Lagrangian based procedures, the traditional aim consists of
obtaining the solution value of the corresponding parametric
mixed 0–1 Lagrangian dual problem via solving single scenario
submodels once the nonanticipativity constraints (NAC) have
been dualized, and the parameters (i.e., the Lagrange multipliers)
are updated by using different subgradient and cutting plane
based methodologies.

Instead of considering a splitting variable representation over
the set of scenarios, in this paper we propose a new approach so
named Cluster Lagrangian Decomposition (for short, CLD) to
decompose the model into a set of scenario clusters. So, we
computationally compare the performance of the Subgradient
Method (SM) [16], the Volume Algorithm (VA) [3], the Progressive
Hedging Algorithm (PHA) [21] and the Dynamic Constrained
Cutting Plane (DCCP) scheme [19] for Lagrange multipliers updat-
ing while solving large-scale stochastic mixed 0–1 problems in an
algorithmic framework based on scenario clusters decomposition.
A successful result may open up the possibility for tightening the
lower bounds of the solution value at the candidate Twin Node
Families in the exact BFC scheme for both two-stage and multi-
stage types of problems, see e.g., [8].

For different choices of the number of scenario clusters we
report the computational experience by using CPLEX, integrated
in the COIN-OR environment, to verify the effectiveness of the
proposal. In this sense, we also give computational evidence of
the model tightening effect and the computational cost that
preprocessing, cut generation and appending and parallel com-
puting tools have in stochastic integer optimization too, see [20].
We also computationally compare the new approach with the
cluster singleton one (i.e., the LD for single scenarios). It outper-
forms it as well as the plain use of the MIP solver of choice, CPLEX.
The proposed approach provides a tight lower bound such that
the quasi-optimality gap of the upper solution bound obtained by
other means on large-scale instances is very small and frequently,
guarantees its optimality. However, in some cases the plain use of
CPLEX does not even provide the feasible solution within a large
elapsed time limit, such that its objective function value is simply
an upper bound of the solution value of the original stochastic
problem. Additionally, in other cases where the plain use of CPLEX
obtains feasible solutions without guaranteeing their optimality
within the time limit, we can prove in much smaller elapsed time
that the incumbent CPLEX solution is the optimal one, since our
CLD procedures provide lower bounds identical to the value of
that solution. Finally, the CPLEX incumbent solution is also
frequently worse than the solution that is obtained by our CLD
approach, being the quality of the solution and the small elapsed
time that it requires good enough.

The remainder of the paper is organized as follows: Section 2
presents the two-stage stochastic mixed 0–1 problem in compact
and splitting variable representations over the scenarios and
scenario clusters. Section 3 summarizes the theoretical results
on Lagrangian decomposition and presents the Cluster Lagrangian
Decomposition approach. Section 4 presents the four procedures
mentioned above for updating the Lagrange multipliers. Section 5
reports the results of the computational experiment. Section 6
concludes.

2. Two-stage stochastic mixed 0–1 problem

In many real cases a two-stage deterministic mixed 0–1
optimization model must be extended to consider the uncertainty
in some of the parameters. In our case, these are the objective
function, the right and left hand-side vectors and the constraint
matrix coefficients. This uncertainty is introduced by using the
scenario analysis approach. When a finite number of scenarios is

considered, a general two-stage program can be expressed in
terms of the first stage decision variables being equivalent to a
large, dual block-angular programming problem, introduced in
[26] and known as Deterministic Equivalent Model (DEM). It is
worth to point out that the uncertainty of the second-stage
parameters affects not only the second-stage variables but also
the first-stage ones.

Let us consider the compact representation of the DEM of a
two-stage stochastic integer problem (MIP),

ðMIPÞc : zMIP ¼min c1dþc2xþ
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oAO
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where the uncertainty may affect parameters associated with all
variables (first-stage and second-stage variables). c1 and c2 are
known vectors of the objective function coefficients for the d and
x variables in the first stage, respectively, b1 and b2 are the known
left and right hand side vectors for the first stage constraints,
respectively, and A is the known matrix of coefficients for the first
stage constraints. For each scenario o, wo is the likelihood
attributed to the scenario, such that

P
oAOwo ¼ 1, ho1 and ho2

are the left and right hand side vectors for the second stage
constraints, respectively, and qo1 and qo2 are the objective function
coefficients for the second stage g and y variables, respectively,
while To and Wo are the technology and recourse constraint
matrices under scenario o, for oAO, where O is the set of
scenarios to consider. Notice that there are two types of decision
variables at each stage, namely, the set of d 0–1 and x continuous
variables for the first stage, and the set of go 0–1 and yo

continuous variables for the second stage.
Notice also that for the purpose of simplification, the objective

function to optimize in the models dealt with in this paper is the
expected value over the set of scenarios O, i.e., the risk neutral
attitude. An interesting extension appears, in case of considering
other coherent risk averse measures as opposed to the risk
neutral attitude considered in this work, like the VaR, CVaR or
even the optimization of the objective function expected value
subject to stochastic dominance constraints (sdc) for a set of
profiles, see e.g., [9,10]. In all of these models appear the known
as scenario linking constraints, which must be suitably treated in
the scenario-cluster decomposition of the model.

The structure of the uncertain information can be visualized as
a tree, where each root-to-leaf path represents one specific
scenario, o, and corresponds to one realization of the whole set
of the uncertain parameters. In the example depicted in Fig. 1,
there are 9O9¼ 10 root-to-leaf possible paths, i.e., scenarios.
Following the nonanticipativity principle, stated in [26] and
restated in [21], all scenarios should have the same value for
the related first stage variables in the two-stage problem.

The left section of Fig. 1 implicitly represents the nonantici-
pativity constraints (NAC, for short). This is the compact repre-
sentation shown in model (1). The right section of Fig. 1 gives the
same information as the compact representation but using a
splitting variable scheme and noticing that it explicitly represents
the NAC (i.e., imposing the equality) on the first stage variables
do, xo and for all the scenarios o.

Let us consider the splitting variable representation of the DEM
of the two-stage stochastic mixed 0–1 problem:

ðMIPÞs : zMIP ¼min
X
oAO
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