
Hybrid column generation and large neighborhood search
for the dial-a-ride problem

Sophie N. Parragh a, Verena Schmid a,b,n

a Department of Business Administration, University of Vienna, Vienna, Austria
b Centro para la Optimizacióny Probabilidad Aplicada (COPA), Departamento de Ingenierı́a Industrial, Universidad de los Andes, Cr 1E No. 19A-10, ML315, Bogotá, Colombia

a r t i c l e i n f o

Available online 10 August 2012

Keywords:

Large neighborhood search

Column generation

Hybrid algorithm

Variable neighborhood search

Dial-a-ride problem

a b s t r a c t

Demographic change towards an ever aging population entails an increasing demand for specialized

transportation systems to complement the traditional public means of transportation. Typically, users

place transportation requests, specifying a pickup and a drop off location and a fleet of minibuses

or taxis is used to serve these requests. The underlying optimization problem can be modeled as a dial-

a-ride problem. In the dial-a-ride problem considered in this paper, total routing costs are minimized

while respecting time window, maximum user ride time, maximum route duration, and vehicle

capacity restrictions. We propose a hybrid column generation and large neighborhood search algorithm

and compare different hybridization strategies on a set of benchmark instances from the literature.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Demand responsive transportation services are needed, e.g. in
remote rural areas, where no general public transportation
systems exist, as a complementary service to available public
transportation systems for the elderly or disabled, or in the area of
patient transportation to and from hospitals and other medical
facilities. All these services involve the transportation of persons
who place transportation requests, specifying an origin and a
destination location. The underlying optimization problem is
usually modeled in terms of a dial-a-ride problem (DARP). The
field of DARPs has received considerable attention in the litera-
ture. However, due to the application oriented character of this
problem, the objectives considered as well as the constraints
imposed vary considerably; rather recent surveys covering DAPRs
and demand responsive transportation are due to Cordeau and
Laporte [1] and Parragh et al. [2].

In the DARP under consideration in this paper, the objective
corresponds to the minimization of the total routing costs.
A homogeneous fleet of vehicles of size m has to serve a given
set of transportation requests n. These are all known in advance of
the planning. In the following, we will refer to the origin or pickup
node of a request i by i, and to its destination or drop off node by
nþ i. Users specify time windows for either the origin or the
destination. In addition, maximum user ride times, route duration

limits, and vehicle capacity constraints have to be considered in
the planning.

This version of the DARP has been considered by Cordeau
and Laporte [3], who propose a tabu search algorithm and a set of
20 benchmark instances, by Parragh et al. [4], who develop a
competitive variable neighborhood search (VNS) heuristic, and by
Jain and Van Hentenryck [5], who propose a constraint program-
ming based large neighborhood search algorithm. A formal
definition of the problem can be found in [6], where a branch-a-
cut algorithm is proposed that solves instances with up to 36
requests. Ropke et al. [7] propose two new two-index formula-
tions and a number of additional valid inequalities which are used
within branch-and-cut algorithms. Instances with up to 8 vehicles
and 96 requests are solved to optimality. In [8], the same
instances are solved by means of branch-and-cut-and-price.

Since we consider a route duration limit in combination with a
time window at the depot and maximum user ride times in
connection with time windows at either the pickup or the drop off
location, the scheduling subproblem (and hence also the feasi-
bility check) is more involved than in other routing problems.
Cordeau and Laporte [6] propose an eight step evaluation scheme
to determine the feasibility of a given route. We use this scheme
in the revised version of [4]. The evaluation scheme is based on
the forward time slack as introduced by Savelsbergh [9] which is
first used to reduce the duration of the tour and then to reduce
the individual ride time of each request on the tour. If l gives the
length in terms of the number of nodes along the tour the forward
time slack computation is of complexity O(l) [1].

In recent years, the field of hybrid metaheuristics, and math-
euristics in particular, has received more and more attention

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cor.2012.08.004

n Corresponding author at: Department of Business Administration, University

of Vienna, Vienna, Austria.

E-mail addresses: sophie.parragh@univie.ac.at (S.N. Parragh),

verena.schmid@univie.ac.at (V. Schmid).

Computers & Operations Research 40 (2013) 490–497

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2012.08.004
dx.doi.org/10.1016/j.cor.2012.08.004
dx.doi.org/10.1016/j.cor.2012.08.004
mailto:sophie.parragh@univie.ac.at
mailto:verena.schmid@univie.ac.at
dx.doi.org/10.1016/j.cor.2012.08.004
dx.doi.org/10.1016/j.cor.2012.08.004


[10,11]. In the field of vehicle routing, metaheuristic and column
generation hybrids have shown to be especially successful:
Prescott-Gagnon et al. [12], e.g., propose a branch-and-price
based large neighborhood search algorithm for the vehicle routing
problem with time windows; heuristic destroy operators are
complemented by a branch-and-price based repair algorithm.
Muter et al. [13], on the other hand, propose a hybrid tabu search
heuristic, where the column pool is filled with feasible routes
identified by the tabu search. The search is then guided by the
current best lower and upper bound; the current best lower
bound is obtained from solving the linear relaxation of a set
covering type formulation on the current column pool; the
current best upper bound is computed by imposing integrality
on the decision variables. Both methods are tested on benchmark
instances for the vehicle routing problem with time windows.
Using related ideas, Pirkwieser and Raidl [14] propose variable
neighborhood search ILP hybrid for the periodic vehicle routing
problem with time windows: feasible solutions generated by the
metaheuristic are used to populate the column pool. A set cover-
ing problem (SCP) is iteratively solved on this pool and in case of
improvement, the current solution of the VNS is replaced by the
solution of the SCP.

In line with these developments, we propose a hybrid method
for the DARP. It integrates VNS into column generation and
combines it with large neighborhood search (LNS). LNS, as a
stand-alone method, has shown to work well when applied to
routing problems in general [15], and for the pickup and delivery
problem with time windows in particular [16] (a problem closely
related to the DARP). Following recent developments in the
column generation field [17] and given its success in solving
difficult routing problems [18,19], we propose a VNS based
column generator to identify additional routes.

The remainder of this paper is organized as follows. Section 2 is
devoted to a detailed presentation of the proposed hybrid frame-
work. This is followed by computational experiments, illustrating
the merits of each of the components. Conclusions and directions
for future research are given at the end of the paper.

2. Solution framework

The proposed hybrid framework consists of two main algo-
rithmic components: LNS and column generation. These two
components are described in the following. Thereafter, their
combination is illustrated in further detail.

2.1. Large neighborhood search

LNS has been introduced by Shaw [20]. Its principle is
relatively simple: in each iteration the incumbent solution is
partially destroyed and then it is repaired again; that is, first a
given number of elements are removed and then they are
reinserted. Every time these operations lead to an improved
solution, the new solution replaces the incumbent solution,
otherwise it is discarded. Ropke and Pisinger [16] extend Shaw’s
idea and they propose to use a number of different destroy and
repair operators. Given the success of this method, all our
operators are either based on or correspond to the ones employed
in [16]. In terms of destroy operators these are the random
removal operator, the worst removal operator, and the related
removal operator; in terms of repair operators, these are a greedy
insertion heuristic, and k-regret insertion heuristics. In contrast to
[16], we do not use an adaptive layer to guide the selection of the
operators but we choose them randomly. The reason for this
design decision is the following. Our aim is to keep each
component of our hybrid framework as simple as possible and

an adaptive layer comes at the price of a large number of
additional parameters, compared to only small gains in solution
quality.

In every iteration of the proposed LNS, before a removal
operator is applied to the incumbent solution, the number of
requests to be removed q has to be determined. In our case, in
each iteration, q is chosen randomly between 0.1n and 0.5n. Then,
one of the destroy operators is selected randomly and applied to
the current incumbent solution.

The random removal operator randomly removes q requests.
The worst removal operator randomly removes requests while
biasing the selection towards requests whose removal would
improve the objective function value the most. Finally, in the
related removal operator the selection of requests is biased
towards related requests. We use a slightly different similarity
measure than the one employed in [16]. It has the advantage of
being parameter free but it is not only based on the distance
between two requests, as proposed in [21]. Two requests i and j

are said to be related if ð9Bi�Bj9þ9Bnþ i�Bnþ j9þtijþtnþ i,nþ jÞ is
small; tij denotes the distance between location i and j; and Bi the
beginning of service at i. In every iteration of the related removal
operator, we bias the choice towards those requests that are the
most similar to all requests that have already been removed.

Removed requests are put into the request bank and, in a next
step, they are reinserted using one of the repair operators. We
randomly choose a repair operator among greedy insertion, 2-
regret insertion, 3-regret insertion, 4-regret insertion and m-
regret insertion.

Using the greedy insertion heuristic, in each iteration, the
unserved request that deteriorates the objective function value
the least is inserted at its best insertion position. The regret
insertion heuristics work as follows: in each iteration the
unserved request that is associated with the largest regret value
is inserted at its best insertion position. Let Dði,r,sÞ denote the
difference in objective function value if request i is inserted at its
best position into route r of solution s. Now assume that Dði,1,sÞ is
associated with the route where i can be inserted the cheapest,
Dði,2,sÞ with the route where i can be inserted the second-
cheapest, and so on. Then, the regret value R(i) is computed as
follows:

RðiÞ ¼
Xk

r ¼ 2

½Dði,r,sÞ�Dði,1,sÞ� ð1Þ

with kAf2,3,4,mg, depending on the chosen version of the
heuristic (2-regret, 3-regret, 4-regret, and m-regret). We refer to
[16] for additional information.

In order to further diversify the search we allow solutions that
deteriorate the incumbent solution by at most 3% to be accepted
with a probability of 1%. In order to facilitate switching between
LNS and other components, we refrain from using more sophis-
ticated acceptance schemes. We note, however, that feasibility is
maintained at all times: if requests cannot be inserted in a
feasible way and thus remain in the request bank, the new
solution is not considered for acceptance. Since deteriorating
moves are allowed, besides the current incumbent solution, we
also keep track of the best solution identified during the search.

Furthermore, following the findings of [16], in each iteration,
we randomly choose if the selected repair operator is used in its
deterministic or in its randomized version. If the randomized
version is selected, every time the evaluation function is called, it
randomly chooses a noise factor in [0.5, 1.5] and multiplies the
original insertion costs by it.

Finally, like in [4], every time a new solution is generated and
it is at most 5% worse than the current best solution, the new
solution undergoes local search based improvement. Solutions

S.N. Parragh, V. Schmid / Computers & Operations Research 40 (2013) 490–497 491



Download English Version:

https://daneshyari.com/en/article/10347576

Download Persian Version:

https://daneshyari.com/article/10347576

Daneshyari.com

https://daneshyari.com/en/article/10347576
https://daneshyari.com/article/10347576
https://daneshyari.com

