
Two-server parallel system with pure space sharing and Markovian arrivals

S.R. Chakravarthy a, H.D. Karatza b,n

a Department of Industrial and Manufacturing Engineering, Kettering University, Flint, MI 48504, USA
b Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki 541 24, Greece

a r t i c l e i n f o

Available online 16 August 2012

Keywords:

Markovian arrival process

Parallel systems

Rigid job

Optimization

Algorithmic probability

a b s t r a c t

We consider a parallel system with two identical servers and pure space sharing among rigid jobs. The

parallel system is modeled as an MAP/M/2 queue with two types of jobs. While one type of jobs

requires only one server, the other type needs both the servers before leaving the system. Using

matrix–analytic methods, we analyze the queueing system in steady state. We report some interesting

performance measures as well as illustrative examples to bring out the qualitative nature of the model

under study.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction and model description

In parallel and distributed systems, the scheduling of jobs on
processors has been shown to be a critical factor in achieving
efficient parallel execution. Users expect their individual jobs to
achieve excellent performance. The main issue is how to share
system resources among competing jobs in a way that satisfies
the demands of jobs and produces a good overall performance.
These objectives raise a number of scheduling policy issues with
respect to workload type and resource heterogeneity.

Good scheduling policies can maximize system and individual
application performance and avoid unnecessary delays. To eval-
uate the performance of these systems, researchers often apply
simulation models to obtain results [8,9]. With simulation it is
possible to simulate the system under study in detail. However, in
many cases simulation models do not give insight into the exact
way a factor affects the performance of the system. Hence,
approaching the analysis of parallel and distributed systems via
analytical modeling is preferred. This paper belongs to this
category. It analyzes a parallel system model with two servers
and a specific job type known as rigid. In addition, it is assumed
that jobs in service share the servers according to pure space
sharing.

An M/M/2 parallel system model with pure space sharing
among rigid jobs has been studied analytically in [6]. Two types
of jobs were considered and closed-form expressions for perfor-
mance measures of interest of the parallel system were provided.
Also, the authors in [6] validated their expressions via simulation.
In this paper we model the parallel system as an MAP/M/2 queue.

Using matrix–analytic methods, we analyze the queueing system
in steady state.

In [7], the author considers a multi-server queueing system
with Poisson arrivals and exponential services wherein the
customers require a random number of servers. However, here
the author assumes that the servers (all working on the same
customer) are not released at the same time. However, in [3], the
authors study a similar model considered in [7] (i.e., a multi-
server queueing system with Poisson arrivals and exponential
services such that the customers require a random number of
servers) but assume that the servers end service concurrently.
They employ a system point approach for obtaining the waiting
time distribution for each customer type (a type is defined based
on the number of servers required by a customer). For the case of
a two-server system they derive explicit solutions. While the
model in [7] is totally different from the one studied here due to
the nature of how the servers are released, the model studied in
this paper generalizes the one studied in [3] for the case of a two-
server system using totally a different approach.

This model studied in this paper can be applied to dual-
processor parallel computer systems which are very common
computing platforms today (for example two processor PCs). The
model can also be applied widely to manufacturing problems
where a job may need two servers (e.g. machines or people)
simultaneously.

Our parallel system model consists of two homogeneous
servers that share a single unbounded queue. Jobs arrive at the
system according to a Markovian arrival process (MAP), a versatile
point process introduced by Neuts [13]. A brief description of this
process is given below. The service times of the jobs are exponen-
tially distributed with parameter m. Each job needs a certain
number of servers to start the execution. Specifically, a job may
require one server with probability p1 or two servers with
probability p2 ¼ 1�p1, 0rp1r1. Since the extreme cases, p1 ¼ 0

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.cor.2012.08.002

n Corresponding author. Tel.: þ30 2310 997974.

E-mail addresses: schakrav@kettering.edu (S.R. Chakravarthy),

karatza@csd.auth.gr (H.D. Karatza).

Computers & Operations Research 40 (2013) 510–519

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2012.08.002
dx.doi.org/10.1016/j.cor.2012.08.002
dx.doi.org/10.1016/j.cor.2012.08.002
mailto:schakrav@kettering.edu
mailto:karatza@csd.auth.gr
dx.doi.org/10.1016/j.cor.2012.08.002
dx.doi.org/10.1016/j.cor.2012.08.002

and p1 ¼ 1, reduce, respectively, to the classical MAP/M/1 and
MAP/M/2 queues, our focus is primarily on p1 inside the unit
interval. The queuing discipline for all jobs is FCFS. A job at the
head of the queue can start execution only if the number of
servers it requires is available. Otherwise, it is blocked until all
servers it needs are released. No other job behind a blocked one
can start execution because of the FCFS scheduling policy. A
pictorial description of the queueing model under study is
displayed in Fig. 1.

The number of processors a job requires is fixed and is
specified by the user at the submission time. It does not change
during its execution. Furthermore, the jobs are rigid [1]. That is,
they acquire all the processors they need at the same time and
release them simultaneously soon after execution. We employ
pure space sharing [1]. That is, we assume that each job is
executed exclusively and no time sharing is employed.

Now we will briefly describe the versatile point process
introduced by Neuts. A MAP is a tractable class of Markov renewal
processes. It should be noted that by appropriately choosing the
parameters of the MAP the underlying arrival process can be
made as a renewal process. The MAP is a rich class of point
processes that includes many well-known processes such as
Poisson, PH-renewal processes, and Markov-modulated Poisson
process. One of the most significant features of the MAP is the
underlying Markovian structure and fits ideally in the context of
matrix–analytic solutions to stochastic models. Matrix–analytic
methods were first introduced and studied by Neuts [14]. As is
well known, Poisson processes are the simplest and most tract-
able ones used extensively in stochastic modeling. The idea of the
MAP is to significantly generalize the Poisson processes and still
keep the tractability for modeling purposes. Furthermore, in
many practical applications, notably in communications engi-
neering, production and manufacturing engineering, the arrivals
do not usually form a renewal process. So, MAP is a convenient
tool to model both renewal and non-renewal arrivals. While MAP

is defined for both discrete and continuous times, here we will
need only the continuous time case.

The MAP in continuous time is described as follows. Let the
underlying Markov chain be irreducible and let Qn be the
generator of this Markov chain. At the end of a sojourn time in

state i, that is exponentially distributed with parameter li, one of

the following two events could occur: with probability pð1Þij the

transition corresponds to an arrival and the underlying Markov

chain is in state j with 1r i, jrm; with probability pð0Þij the

transition corresponds to no arrival and the state of the Markov

chain is j, ja i. Note that the Markov chain can go from state i to

state i only through an arrival. Define matrices D0 ¼ ðd
ð0Þ
ij Þ and

D1 ¼ ðd
ð1Þ
ij Þ such that dð0Þii ¼�li, 1r irm, dð0Þij ¼ lip

ð0Þ
ij , for ja i and

dð1Þij ¼ lip
ð1Þ
ij , 1r i, jrm. By assuming D0 to be a nonsingular

matrix, the interarrival times will be finite with probability one
and the arrival process does not terminate. Hence, we see that D0

is a stable matrix. The generator Qn is then given by Qn
¼D0þD1.

Thus, D0 governs the transitions corresponding to no arrival
and D1 governs those corresponding to an arrival. It can be shown
that MAP is equivalent to Neuts’ versatile Markovian point
process. The point process described by the MAP is a special class

of semi-Markov processes with transition probability matrix
given byZ x

0
eD0t dtD1 ¼ ½I�eD0x�ð�D0Þ

�1D1, xZ0: ð1Þ

For use in sequel, let eðrÞ, ejðrÞ and Ir denote, respectively, the
(column) vector of dimension r consisting of 1’s, column vector of
dimension r with 1 in the jth position and 0 elsewhere, and an
identity matrix of dimension r. When there is no need to
emphasize the dimension of these vectors we will suppress the
suffix. Thus, e will denote a column vector of 1’s of appropriate
dimension. The notation �will stand for the Kronecker product of
two matrices. Thus, if A is a matrix of order m� n and if B is a
matrix of order p� q, then A� B will denote a matrix of order
mp� nq whose ði,jÞth block matrix is given by aijB. For more
details on Kronecker products we refer the reader to [12].

Let g be the stationary probability vector of the Markov
process with generator Qn. That is, g is the unique (positive)
probability vector satisfying

gQn
¼ 0, ge¼ 1: ð2Þ

Let n be the initial probability vector of the underlying Markov
chain governing the MAP. Then, by choosing n appropriately we
can model the time origin to be (a) an arbitrary arrival point;
(b) the end of an interval during which there are at least k

arrivals; (c) the point at which the system is in specific state such
as the busy period ends or busy period begins. The most inter-
esting case is the one where we get the stationary version of the
MAP by n¼ g. The constant l¼ gD1e, referred to as the funda-

mental rate gives the expected number of arrivals per unit of time
in the stationary version of the MAP.

Often, in model comparisons, it is convenient to select the time
scale of the MAP so that l has a certain value. That is accom-
plished, in the continuous MAP case, by multiplying the coeffi-
cient matrices D0 and D1, by the appropriate common constant.
For further details on MAP and their usefulness in stochastic
modeling, we refer to [11,15,16] and for a review and recent work
on MAP we refer the reader to [2,4,5].

2. The steady-state analysis

In this section we will analyze the queueing model described
in Section 1 in steady state. Let N(t) J1ðtÞ,J2ðtÞ, and J3ðtÞ denote,
respectively, the number of customers in the system1 (not
including the ones identified in J1ðtÞ,J2ðtÞ, if any), the number of
servers required by the oldest job in the system, the number of
servers required by the second oldest job in the system, and the
phase of the arrival process at time t. The process
fðNðtÞ,J1ðtÞ,J2ðtÞ,J3ðtÞÞ : tZ0g is a continuous-time Markov chain
and the state space is given by

O¼ fðr,j3Þ : 0rrr2,1r j3rmg

[fði,j1,j2,j3Þ : iZ0,1r j1,j2r2,1r j3rmg:

Note that

� The level 0̂ ¼ fð0,kÞ : 1rkrmg denotes the system is idle and
the arrival process is in phase k.
� The level 1̂ ¼ fð1,kÞ : 1rkrmg denotes the system corre-

sponding to only one server being busy and no job is waiting
in the queue with the arrival process is in phase k.

Fig. 1. Queueing model.

1 N(t) cannot be taken as the number of jobs in the queue at time t as the

second oldest job may still be waiting for service and is not accounted in this.

S.R. Chakravarthy, H.D. Karatza / Computers & Operations Research 40 (2013) 510–519 511

Download English Version:

https://daneshyari.com/en/article/10347583

Download Persian Version:

https://daneshyari.com/article/10347583

Daneshyari.com

https://daneshyari.com/en/article/10347583
https://daneshyari.com/article/10347583
https://daneshyari.com

