
An improved algorithm for the longest common subsequence problem

Sayyed Rasoul Mousavi n, Farzaneh Tabataba

Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran

a r t i c l e i n f o

Available online 2 April 2011

Keywords:

Longest common subsequence

LCS

Beam search

Heuristic function

Algorithms

Bioinformatics

a b s t r a c t

The Longest Common Subsequence problem seeks a longest subsequence of every member of a given

set of strings. It has applications, among others, in data compression, FPGA circuit minimization, and

bioinformatics. The problem is NP-hard for more than two input strings, and the existing exact

solutions are impractical for large input sizes. Therefore, several approximation and (meta) heuristic

algorithms have been proposed which aim at finding good, but not necessarily optimal, solutions to the

problem. In this paper, we propose a new algorithm based on the constructive beam search method. We

have devised a novel heuristic, inspired by the probability theory, intended for domains where the

input strings are assumed to be independent. Special data structures and dynamic programming

methods are developed to reduce the time complexity of the algorithm. The proposed algorithm is

compared with the state-of-the-art over several standard benchmarks including random and real

biological sequences. Extensive experimental results show that the proposed algorithm outperforms

the state-of-the-art by giving higher quality solutions with less computation time for most of the

experimental cases.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Longest Common Subsequence (LCS) problem asks for a
longest string that is a subsequence of every member of a given
set of strings. A subsequence of a given string is a string that
can be obtained by deleting zero or more characters from the
given string. Among various applications of this problem are
file comparison [1], text editing [2], data compression [3], query
optimization in databases [4], clustering Web users [5], and
circuit minimization in field programmable gate arrays (FPGAs)
[6]. In addition, LCS is used in molecular biology to compare DNA
or RNA sequences and to determine homology in macromolecules
[2,7–9].

For two input strings, LCS can be efficiently solved to optim-
ality using dynamic programming in O(l1.l2), where l1 and l2 are
the lengths of the input strings. However, the problem is NP-hard
for an arbitrary number of strings [10,11]. Various optimal (exact)
algorithms have been proposed for this problem. One approach
was to use dynamic programming. In [12,13], dynamic program-
ming algorithms were proposed to solve the problem in O(ln),
where n is the number of the input strings and l is the length of
the longest one. These algorithms were improved in [14,15] to
reduce the complexity to O(ln�1), which is still exponential in the

number of strings. Further algorithms based on dynamic pro-
gramming may be found in the survey by Berghot et al. [16].
Another approach to tackle the LCS problem was based on
traversing a search tree. Hsu and Du proposed in [17] an
enumeration algorithm based on backtracking. The idea was
further enhanced by Easton et al., who adopted a selection
heuristic and two new types of branch and bound pruning [18].
The resulting algorithm, called Specialized Branching (SB), was
compared with the previous state-of-the-art algorithms with
positive results. In contrary to the above-mentioned dynamic
programming algorithms, which are exponential in the number of
strings, SB is exponential in the length of the longest common
subsequence (LLCS). Among other works on LCS is [19] where an
integer programming formulation was proposed whose complex-
ity was still O(ln).

The above-mentioned optimal algorithms for LCS are imprac-
tical for large input sizes, hence the use of non-optimal solutions
are inevitable. Until 1994, no heuristic method was introduced for
the LCS problem [20]. The first non-optimal algorithm was Long

Run (LR) which was an approximation algorithm with an approx-
imation ratio of 9

P
9 [20,21]. This algorithm simply constructs a

string, as its output, using only a single character in
P

, which is
not of interest in practice. Another approximation algorithm
called Expansion was introduced in [22] which provided the same
approximation ratio of 9

P
9, without the single-character restric-

tion of Long Run. The complexity of Expansion was Oðnl4 lg lÞ,
which was further improved in [23] using minimum-spanning-
trees. Huang et al. [24] devised two more approximation

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cor.2011.02.026

n Corresponding author.

E-mail addresses: srm@cc.iut.ac.ir (S.R. Mousavi),

f.tabataba@ec.iut.ac.ir (F. Tabataba).

Computers & Operations Research 39 (2012) 512–520

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.02.026
mailto:srm@cc.iut.ac.ir
mailto:f.tabataba@ec.iut.ac.ir
dx.doi.org/10.1016/j.cor.2011.02.026
dx.doi.org/10.1016/j.cor.2011.02.026


algorithms called Enhanced Long Run (ELR) and Best Next for

Maximal Available Symbols (BNMAS), which were of O(9
P

9nl)

and O(9
P

92nlþ9
P

93l) complexities, respectively, still with the
approximation ratio of 9

P
9. They showed that their algorithms

were quite successful in practice. In [25], the authors showed that
BNMAS was considerably faster than Expansion, especially when
9
P

9 is small and/or n is large and that it outperformed Expansion
in most of the test cases.

In addition to the above-mentioned approximation algorithms,
heuristic algorithms, which do not normally guarantee an approx-
imation ratio, were also proposed for the LCS problem. The
Best-Next heuristic was proposed in [26,27] as a simple heuristic
algorithm which is run in O(9

P
9nl), and it was shown to be of

superior results compared to some of the above-mentioned
approximation algorithms, such as LR, for practical datasets.
Guenoche and Vitte [28] proposed a linear-time dynamic

programming heuristic (DPH), which was further modified by
Guenoche [29]. Easton and Singireddy [30] introduced, based on
the large-neighborhood search paradigm, a new algorithm called
time horizon specialized branching heuristic (THSB), which was
shown to be superior to DPH. More recently, Shyu and Tsai [25]
used ant colony optimization (ACO) to solve LCS. They compared
their algorithm with expansion and BNMAS algorithms by imple-
menting and testing them over random and biological datasets
obtained from NCBI [31]. According to the experimental results,
ACO dominates both of the other algorithms in terms of quality
and is faster than Expansion. Finally, Blum et al. proposed a
constructive Beam Search algorithm, called BS, for the LCS
problem [32]. In their algorithm, two different greedy functions
were used to evaluate and compare candidate solutions. Their BS
algorithm is an extension of a predecessor beam search intro-
duced by Blum and Blesa [33]. In order to compare their BS
algorithm with previous leading algorithms in the literature,
Blum et al. used two types of parameter settings; one called low

time aimed at producing quick solutions and the other called high

quality intended for high quality solutions but at extra computa-
tion cost. They compared BS with Expansion, Best-Next, G&V,
THSB and ACO algorithms over three benchmarks previously
introduced in [33,30,25]. Extensive experimental results showed
that Blum et al.’s BS algorithm outperforms, on average, its
predecessors in terms of both quality and computation time,
concluding that it is the current state-of-the-art.

In this paper, we provide an improved beam search algorithm
called IBS-LCS for the LCS problem, which, on average, improves
over the state-of-the-art, with respect to both quality and
computation time. It has been inspired by the Blum et al.’s beam
search algorithm but has the following distinguishing character-
istics. First, a novel probability-based heuristic function is used as
opposed to the heuristic functions used in BS and the other
heuristic algorithms in the literature. We believe that our pro-
posed heuristic function performs better than the existing ones in
domains where the given strings are expected to be independent.
Second, in contrary to the BS algorithm, it does not use upper
bounds for pruning the search tree. Third, BS checks, at each level
of the search tree, whether each new candidate solution is
dominated by an existing candidate solution. To do so, it com-
pares each new candidate solution with every existing one until it
is found to be dominated by some of them or compared by all.
However, we use a pre specified number of ‘best’ solutions, at
each level of the search tree, as potential dominators for the other
candidate solutions. Instead, the time saved by avoiding the extra
comparisons and calculation of upper bounds is invested into
larger values of beam size. As the consequence of the above-
mentioned modifications, IBS-LCS outperforms the state-of-the-
art not only with respect to quality but also with respect to run
time, for most standard benchmarks. More specifically, IBS-LCS

outperforms the state-of-the-art, on average, over 4 out of the
5 benchmark datasets used in [32]. The only benchmark for which
IBS-LCS is not suggested is composed of strings which are highly
similar.

The rest of the paper is organized as follows. Section 2
provides basic notations and definitions used in the rest of
the paper. In Section 3, we present our proposed algorithm. The
new heuristic function is developed in Section 4 followed by a
brief analysis of the time complexity of the algorithm. Section 5
reports the experimental results, and Section 6 concludes the
paper.

2. Basic notations and definitions

Let s be a string of length m. We use sk, where k is an integer
between 1 and m inclusive, to denote the kth character of s. Let s1

and s2 be two strings, A1¼{i9iAN,ir9s19}, and A2¼{i9iAN,ir9s29},
where N is the set of integers greater than zero. We say that s1 is a
subsequence of s2, and write s1!s2, if there is an injective
function g from A1 to A2 such that: (1) 8kAA1, s1

k
¼s2

g(k) and
(2) 8k,k0AA1, kok0 ) g(k)og(k0). We call such a function g a
map of s1 to s2. Note that such a map is not necessarily unique. We
define the cost of a map g of s1 to s2 as the integer g(s1

k), where
k¼9s19. By an optimal map of s1 to s2, we mean a minimum cost
map of s1 to s2, if any. The null string, i.e. the string of zero length,
is considered to be a subsequence of any string.

Let x be a string and S be a nonempty set of strings. We write
x!S if 8siAS, x!si. The Longest Common Subsequence (LCS1)
problem is then defined as to obtain a string x of maximum length
such that x!S. By an input string, we mean a string in S. The
alphabet over which the input strings are defined is denoted byP

; we assume 9
P

941. We use n to denote the number of input
strings; that is, n¼9S9. Since LCS can be efficiently solved for n¼2,
we assume n42. We further assume that S¼{s1,y,sn}; that is, the
input strings are denoted by the small letter s indexed from 1 to n.
We use mi to refer to 9si9 and assume mi40, i¼1,y,n. In the case
all the input strings are of the same length, we use m to denote
their length; otherwise, m denotes max{mi, i¼1,y,n}. We use
(possibly indexed) x to denote a candidate solution. A candidate
solution x is called feasible if x!S; it is otherwise called
infeasible. A feasible candidate solution x is optimal if there exists
no other feasible solution of a length greater than 9x9.

Let x be a feasible candidate solution. We use pi(x) to denote
the cost of the optimal map of x to si. Then qi(x) is defined as
mi�pi(x). By ri(x), we mean the string obtained by deleting the
first pi(x) characters from si (see Fig. 1), and R(x) is defined as the
set {ri(x), i¼1,y,n}. By a random string in this paper, we mean a
string each of whose characters obtained by uniformly-randomly
selecting one of the characters in

P
. Finally, we use Pr(.) to denote

the statistical probability function. Although there are two types
of beam search, namely constructive and perturbative (Local
Beam Search [34]), we use beam search in this paper to refer to
the former.

3. The proposed algorithm

The beam search algorithm, in its standard form, is a determi-
nistic, yet heuristic, tree search. It is similar to the breath-first
search algorithm except that it does not keep all the leaves but
only b of them, where b40 is called the beam size. It turns to a
pure constructive greedy heuristic in the case b¼1; it also turns
to the breath-first search if b is large enough to keep all the

1 It is also referred to as k-LCS, where k¼9S9, in the literature.

S.R. Mousavi, F. Tabataba / Computers & Operations Research 39 (2012) 512–520 513



Download English Version:

https://daneshyari.com/en/article/10347598

Download Persian Version:

https://daneshyari.com/article/10347598

Daneshyari.com

https://daneshyari.com/en/article/10347598
https://daneshyari.com/article/10347598
https://daneshyari.com

