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Constraint handling is one of the major concerns when applying genetic algorithms (GAs) to solve

constrained optimization problems. This paper proposes a boundary simulation method to address

inequality constraints for GAs. This method can efficiently generate a feasible region boundary point set

to approximately simulate the boundary of the feasible region. Based on the results of the boundary

simulation method, GAs can start the genetic search from the boundary of the feasible region or the

feasible region itself directly. Furthermore, a series of genetic operators that abandon or repair

infeasible individuals produced during the search process is also proposed. The numerical experiments

indicate that the proposed method can provide competitive results compared with other studies.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The constrained optimization technique is a hot topic in
operations research area. Generally, there are three types of
constraints, namely linear inequality, nonlinear inequality and
nonlinear equality constraints, as linear equality constraints can
be easily converted and added into other type constraints. In the
remainder of this paper, inequality constraints will refer to linear
and nonlinear inequality constraints, while equality constraints
will only refer to nonlinear equality constraints. The aim of this
paper is to provide a new constraint handling method for genetic
algorithms (GAs) to address inequality constraints that normally
exist in practical problems.

In this paper, we concentrate on constrained optimization
problems that can be represented as the following expression:

Minimize f ðxÞ

Subject to
gjðxÞr0, j¼ 1,2, . . . ,m,

xl
irxirxu

i , i¼ 1,2, . . . ,n,

(
ð1Þ

where x¼(x1, x2,y,xn) is the solution vector, f(x) is the objective
function, gj(x) is the j-th inequality constraint, while xi

l and xi
u are

the lower and upper bounds of the independent variable xi,
respectively.

It should be emphasized that the following conditions are
assumed.

1. The feasible region is connected.
2. The problem only involves inequality constraints.

3. All the independent variables have an lower and upper
bounds.

When solving constrained optimization problems, traditional
deterministic optimization techniques generally require the pro-
blem under consideration to possess certain mathematical prop-
erties, such as continuity, differentiability and convexity, which
may be difficult to satisfy in practical problems. These require-
ments severely limit the applicability of these traditional
approaches. Furthermore, these traditional approaches usually
lack global search capabilities for non-convex problems, as any
local optimal point can satisfy their convergence condition.

GAs are a stochastic search technique inspired by natural
selection and natural genetics [1,2]. In the past decades, GAs have
been extensively used for solving a wide variety of problems, in
which traditional approaches may not work adequately. Com-
pared with traditional approaches, GAs have the following
advantages.

1. GAs do not require the objective function to be continuous or
differentiable.

2. GAs have good robustness for many applications.
3. GAs have outstanding global search capabilities for convex and

non-convex problems.
4. GAs have inherent parallel processing capabilities.
5. GAs are easy to implement.

However, on the other hand, GAs also have some limitations.
GAs are essentially an unconstrained optimization technique.
Although GAs perform well for unconstrained or simple con-
strained optimization problems, they may encounter some diffi-
culties when applied to highly constrained problems. It is very
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likely that individuals generated by traditional genetic operators
(i.e., crossover and mutation) would violate certain constraints. A
special treatment of constraints is usually required to efficiently
find the feasible region and then to prevent the genetic search
from leaving it.

In this paper, we propose a boundary simulation method to
address inequality constraints for GAs. This method allows GAs
to start the genetic search from the boundary of the feasible
region or the feasible region itself directly, even for highly
constrained problems that always have a very small feasible
region. Furthermore, a series of genetic operators that abandon
or repair infeasible individuals produced during the search
process is also proposed to ensure that the genetic search stays
in the feasible region.

The structure of this paper is as follows. Section 2 is a
literature review, which provides a brief introduction to status
of current research on this topic. Section 3 describes the proposed
boundary simulation method in detail. Section 4 combines the
boundary simulation method and GAs to form a new constrained
optimization algorithm called boundary simulation genetic algo-
rithm (BSGA). Section 5 applies BSGA to 12 test problems to
investigate the feasibility and efficiency. Our conclusions are
presented in Section 6. Finally, some possible directions for future
research are discussed in Section 7.

2. Literature review

2.1. Previous constraint handling techniques

In order to handle constraints, many techniques have been
proposed in the past decades. According to Michalewicz [3–5],
Eiben [6], Coello [7] and Salcedo-Sanz [22], the existing constraint
handling techniques can be classified into five different types,
namely penalty methods, special representation and operator
methods, repair methods, separation of objective and constraints
methods, and hybrid methods.

2.1.1. Penalty methods

The main idea behind the penalty method is to transform a
constrained optimization problem into an unconstrained one by
adding a constraint violation measure to the objective function as
a penalty term. Due to the simplicity of its implementation, this
approach is very popular. However, its performance is not always
satisfactory. Furthermore, in most cases, it is difficult to set the
penalty coefficients properly. As reported by Deb [15], a large
penalty value may cause convergence of the algorithm to some
local optimal points; in addition, a small penalty value may cause
the algorithm to converge to an infeasible point or to spend time
exploring the infeasible region. Richardson [8] proposed some
guidelines to set the penalty coefficients properly. However, these
guidelines are still difficult to apply in some cases.

In order to overcome this obstacle, several techniques have
been proposed that use a dynamic or an adaptive penalty scheme
[9–14]. In these methods, the penalty coefficients could be adapted
according to the degree of constraint violation, the overall perfor-
mance of the genetic search or the generation number. For some
problems, the dynamic or adaptive penalty method works well.
However, these methods usually require another set of parameters
to tune the penalty coefficients automatically.

Deb [15] proposed a penalty method that uses a binary
tournament selection operator to handle constraints. In his paper,
the following rules were adopted when comparing two individuals.

1. Any feasible individual is preferred to any infeasible
individual.

2. Among two feasible individuals, the one having better objec-
tive function value is preferred.

3. Among two infeasible individuals, the one having smaller
constraint violation is preferred.

This method does not require any penalty coefficients. However,
it requires other techniques to maintain the population diversity,
which always causes some extra computation costs.

2.1.2. Special representation and operator methods

This method essentially consists in using a specially designed
coding scheme to preserve the feasibility of individuals. This
method is very efficient for its intended applications [16–20].
However, it strongly depends on some special characteristics of
the problem under consideration. Due to the special design of the
representation scheme, the specially designed genetic operators
are always required to work properly. The proposed representa-
tion scheme and the corresponding operators may only be
applicable to the intended problem. Furthermore, prior knowl-
edge of the problem is generally required to design an appropriate
representation scheme and the corresponding genetic operators.
Sometimes the development of the special representation scheme
and the corresponding genetic operators may be difficult or even
impossible.

2.1.3. Repair methods

The main idea behind this method is to repair infeasible
individuals by using a specially designed repair procedure. In
other words, an infeasible individual will be replaced by a nearest
feasible individual [21]. For some problems that only involve
simple constraints, such as non-negativity or simple bounds, the
infeasible individuals can be repaired easily. However, practical
problems may contain some complex constraints. In such circum-
stances, repairing the infeasible individuals can be as complex as
solving the original problem. Sometimes the repairing cost may
be expensive, computationally speaking. Furthermore, prior
knowledge of the problem is generally required to design an
efficient repair procedure. For a comprehensive survey of repair
methods, the reader is referred to [22].

2.1.4. Separation of objective and constraints methods

This method essentially consists in using co-evolution, multi-
objective or other optimization techniques to handle the objective
and the constraints separately. Paredis [23] proposed a co-evolu-
tionary method, in which there are two populations. The first
population contains the constraints to be satisfied, while the
second contains potential solutions. Using the analogy of the
predator–prey model, the selection pressure on members of one
population depends on the fitness of the members of the other
population.

Multi-objective optimization approaches treat the feasibility
as another objective of the problem, i.e., they transform the
original constrained single-objective problem into an uncon-
strained multi-objective problem. Consequently, all the well-
developed multi-objective optimization techniques can be used
to rank the individuals. Based on the ranking result, the selection
and other genetic operators can be performed [24–28].

2.1.5. Hybrid methods

The main idea behind the hybrid method is to combine GAs
with other numerical optimization techniques (e.g., Lagrangian
multiplier, fuzzy logic or simulated annealing) to handle con-
straints. Like penalty methods, these methods generally require
several parameters to work properly [29–32].
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