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a b s t r a c t

Multiplier weights in DEA are obtained by solving any one of several multiplier linear programs (LPs).

These weights are a fundamental aspect of DEA and have many uses and interpretations including

determining marginal rates of substitution. Obtaining usable values from multiplier weights can be

problematic due to the way DEA LPs are formulated and solved. For example, extreme efficient DMUs

generate multiple optima in standard multiplier LPs. This is also true of any efficient or virtual DMU on

a face of the production possibility set with less than full dimension. Another problem arises when the

LP generates optimal solutions where one or more of the multipliers are zero. An important class of

interior point algorithms for LP known as ‘‘path-following’’ methods addresses these two issues about

finding optimal multiplier weights in DEA: (1) reproducibility, that is, the optimal solution is

independent of a starting point since it is generated by applying a well-defined optimization criterion;

(2) non-zero multipliers, whereby the multiplier weights associated with an optimal solution for a

point in the efficient frontier are never zero. In the process of exploring these methods for DEA we

introduce the ‘‘multiplier generator’’ DEA LP formulated to provide access to all multiplier vectors for

points on the efficient frontier. Our results provide prescriptions and recommendations for using path-

following solvers in DEA.

Scope and purpose. This is a study on the generation of non-zero weights in DEA using interior point

methods. The purpose is to generate these weights efficiently and in a manner that can be replicated

independently. There is a clear demand for non-zero multiplier weights in DEA for use to price the

attributes. We introduce new LP formulations specifically designed to provide access to the full set of

multiplier weights at the DMU being scored.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Multiplier weights are a fundamental aspect of DEA. It is what
makes this methodology different from other types of productiv-
ity and performance analyses. An area of interest in DEA focuses
on understanding the information content of multiplier weights.
The original Charnes et al. [1] seminal work noted their use as
marginal productivities for determining marginal rates of
substitution.

In the case of a single input such as expenditure, multiplier
weights can play a key role in apportioning expenditure and
providing a top-down costing of specific outputs. Rouse [2]
describes the use of multiplier weights to improve the construc-
tion of prices for a national pricing framework for the New
Zealand health sector, as well as setting target costs for major

output classes within health service categories such as surgical,
medical, pregnancy, and childbirth.

The analyst who employs DEA for the information provided
by the multiplier weights faces some well-known difficulties.
Multiplier weights can be obtained directly from the optimal
solution of one of many multiplier DEA LP formulations. For
the important case of extreme efficient DMUs, these LPs have
alternate optima and, because of the preponderance of anchor
points1 in real DEA data (see [3]), it is not uncommon to find
zeroes for the values of some of the multipliers when scoring
extreme efficient DMUs.

From a managerial perspective, there are always numerous
measures that are potential candidates for measuring performance.
The need for parsimony in the selection of model inputs and
outputs conveys a message that these are regarded as especially
important to the appraisal process. Zero multiplier weights for an
input or output sends a contradictory message to a manager as it
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implies that these are not regarded as important for the evaluation.
This is particularly disturbing when a DMU is assessed as techni-
cally efficient using less than the full set of model variables. This
makes it difficult to distinguish between DMUs where (i) inclusion
of the zero weighted input or output would disadvantage its
efficiency score and (ii) an input or output is assigned a zero
weighting purely because of the way the solution algorithm
terminates. The imposition of weight constraints can help to
distinguish between these two scenarios but they come at a cost
as well as imposing greater complexity on the model.

Conceptually, a zero weighted input implies that the output
can be produced without it. Alternatively a zero weighted output
implies that this output does not need to be produced. This is
unlikely and again it is difficult to distinguish between the
scenario where forcing the DMU to include the input or output
would disadvantage its efficiency score versus the scenario where
the zero weight is a function of the solution algorithm. In the first
scenario, the marginal rate of substitution is distorted because the
zero weighted input is treated as a free good. A similar inter-
pretation applies to zero weighted outputs. Perhaps the worst
scenario is under variable returns to scale where the simplex
solution can show the entire efficiency score being obtained from
the scale factor with zero weights on all the outputs or inputs.
Naturally, there is always an alternative optimum that will obtain
strictly positive scores on some of the inputs or outputs but again
this confuses managers and confounds calculations of marginal
rates of substitution and virtual weights.

Alternate optima and zero multipliers represent complications
for the use of these optimal solutions as multiplier weights.
Without a rule or criterion for selecting a solution from among
alternate optima, these solutions are essentially arbitrary. This, in
turns, affects reproducibility. Values of zero for multiplier weights
make them unusable for the purpose of calculating marginal rates
of substitution.

These issues have been addressed before. Charnes et al. [4]
propose a procedure for generating non-zero multipliers for the
Constant Returns to Scale (CRS) model (see [4, Appendix B, p.
234]). Their approach starts with an optimal multiplier solution
with one or more zeroes and proceeds to solve special LPs to
generate solutions specifically to replace the zeroes with non-zero
values. These solutions are then combined to obtain one non-zero
multiplier set. The final solution depends on the initial solution
and its distribution of zeroes. In the paper by Cooper et al. [5], the
problem with arbitrariness and zero multipliers is resolved by
formulating and solving a pair of mixed integer LPs. This approach
is able to produce solutions with non-zero multipliers but since
these solutions correspond to the normal of a facet of the
production possibility set, they could be shared by other extreme
efficient DMUs; that is, the optimal multiplier solutions provided
by Cooper et al. [5] may not be specific to the extreme efficient
DMU that generated them.

In this paper, we explore a class of interior point methods
(IPMs) as a way to generate non-zero multiplier solutions that are
specific to any point on the efficient frontier and satisfy an
optimization criterion. As part of the development, we study the
relevant aspects of the geometry of the production possibility set
and introduce a DEA ‘‘multiplier generator’’ LP formulated to
include all possible multiplier vectors at points on the efficient
frontier. This is important because standard oriented formula-
tions such as the input and output-oriented LPs of Banker et al. [6]
may make some multiplier solutions unavailable. We also treat
theoretical and practical aspects behind interior point methods,
especially as they relate to generating useful multiplier solutions
for DEA. All the results are illustrated using a small example and,
at the end, testing is performed on actual data from the health-
care industry.

2. DEA and linear programming

LP formulations and their solutions have always been an
integral part of DEA. LPs to identify efficient entities appear with
the first paper introducing DEA by Charnes et al. [1]. Since then,
several DEA LP formulations have been proposed and many more
are possible depending on benchmarking objectives or measures
of efficiency required.

The DEA analyst typically relies on familiar tools to solve the
LPs such as what might be available in a commercial spreadsheet
or perhaps something more specialized. (For a comprehensive
study of DEA software, refer to Barr [7].) With the notable
exception of Scheel’s EMS [8], chances are that the simplex
algorithm will solve the LPs.

The simplex algorithm is not always the ideal algorithm for
solving DEA LPs. The standard DEA envelopment LP such as the
one originally proposed by Charnes et al. [1] or the additive model
of Charnes et al. [9], for example, induce degeneracy by duplicat-
ing the data for one of the DMUs in the right-hand side of the LP.
Problems with simplex cycling due to degeneracy in DEA have
been reported [10–12]. Simplex generated solutions to some DEA
LPs do not always provide necessary and sufficient conditions to
classify DMUs as efficient or inefficient. Finally, simplex solutions
can be problematic when the purpose of the LP is to obtain prices
and rates of substitution for DMUs’ attributes.

The simplex algorithm is not the only choice for solving LPs.
An efficient algorithm for LP was introduced by Karmarkar [13] in
1984. This algorithm gave rise to a class of procedures known as
path-following interior point methods (IPM). Unlike the simplex
algorithm which moves along the boundary of the feasible region,
path-following IPMs attempt to track a specific interior ‘‘central
path’’ to optimality. IPM implementations differ on how closely
the central path is actually approximated. The end of the central
path is an extreme point when the optimal solution is unique and
both the IPM and the simplex algorithm find it. Unlike the
simplex, which always terminates at an extreme point, the point
at the end of the central path is in the interior of the optimal face
which is not an extreme point if the face has one or more
dimensions. Such optimal solutions satisfy the strict complemen-
tary slackness condition (SCSC) that exactly one of the members
in a complementary pair is zero [14].

Theoretical path-following IPMs to solve DEA LPs promise
tangible advantages:

1. Issues of cycling due to degeneracy do not affect IPMs. This has
an immediate benefit for DEA computations.

2. IPMs find the optimal solution to an LP which is in a specific,
well-defined, central location on the optimal face: the ‘‘analy-
tic center.’’ The analytic center satisfies an optimization
criterion and is guaranteed to satisfy SCSC.

3. SCSC solutions provide necessary and sufficient conditions for
DMU classification. IPMs obviate the use of the problematic
non-Archimedean LP formulation or the practice of solving a
second LP whenever the first solution does not lead to a
conclusive classification.

4. SCSC solutions for multiplier LPs when scoring points on the
efficient frontier of the production possibility set are guaran-
teed to generate non-zero multipliers.

The last of these properties is the one we wish to explore in
this work. We will investigate the theory and practice behind
generating non-zero optimal solutions to the multiplier LP for-
mulations using path-following IPMs when used to score extreme
efficient DMUs and other efficient DMUs on lower dimensional
faces. In the next section, we formalize this result specifically for
the purpose of solving DEA LPs.
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