
Minimizing mean weighted tardiness in unrelated parallel machine
scheduling with reinforcement learning

Zhicong Zhang a,1, Li Zheng b,n, Na Li c,2, Weiping Wang d,3, Shouyan Zhong d,4, Kaishun Hu a,5

a Department of Industrial Engineering, School of Mechanical Engineering, Dongguan University of Technology, Songshan Lake District, Dongguan 523808,

Guangdong Province, China
b Department of Industrial Engineering, Tsinghua University, Beijing 100084, China
c Department of Industrial Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
d School of Mechanical Engineering, Dongguan University of Technology, China

a r t i c l e i n f o

Available online 2 August 2011

Keywords:

Scheduling

Unrelated parallel machines

Reinforcement learning

Tardiness

a b s t r a c t

We address an unrelated parallel machine scheduling problem with R-learning, an average-reward

reinforcement learning (RL) method. Different types of jobs dynamically arrive in independent Poisson

processes. Thus the arrival time and the due date of each job are stochastic. We convert the scheduling

problems into RL problems by constructing elaborate state features, actions, and the reward function.

The state features and actions are defined fully utilizing prior domain knowledge. Minimizing the

reward per decision time step is equivalent to minimizing the schedule objective, i.e. mean weighted

tardiness. We apply an on-line R-learning algorithm with function approximation to solve the RL

problems. Computational experiments demonstrate that R-learning learns an optimal or near-optimal

policy in a dynamic environment from experience and outperforms four effective heuristic priority

rules (i.e. WSPT, WMDD, ATC and WCOVERT) in all test problems.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Study on parallel machine scheduling mainly uses two sorts of
criteria, one is completion time related criteria, e.g. Weng et al. [39];
the other is tardiness or earliness related criteria. Most parallel
machine scheduling problems with tardiness criteria are known to
be NP hard. Identical parallel machines are the simplest form of
parallel machines. Methodology applied in identical parallel
machine scheduling with tardiness criterion includes approximation
algorithms [22,13,40], dynamic programming [32], branch and
bound algorithms [41], heuristic methods, etc. Heuristic methods
include the modified due date (MDD) rule [1], minimum penalty
increase assignment (MPA) rule, start-time decision (SD) rule [35]
and local search methods, such as genetic algorithm [8], simulated
annealing [35] and Tabu Search [2]. Setup time is considered in
some research. For example, Sivrikaya-Serifoglu and Ulusoy [31] and

Kim et al. [21] considered sequence-dependent setup time, Yi and
Wang [42] considered batch setup times, and Eom et al. [15]
considered family setup times.

Unrelated parallel machines are a more complicated form of
machines than identical parallel machines. Bank and Werner [5]
addressed the problem of minimizing the weighted sum of linear
earliness and tardiness penalties in unrelated parallel machine
scheduling. They derived some structural properties useful to
searching for an approximate solution and proposed various
constructive and iterative heuristic algorithms. Liaw et al. [23]
found the efficient lower and upper bounds of minimizing the
total weighted tardiness by a two-phase heuristic and presented a
branch-and-bound algorithm incorporating various dominance
rules. Kim et al. [20] studied batch scheduling of unrelated
parallel machines with a total weighted tardiness objective
considering setup times. They examined four search heuristics
for this problem: the earliest weighted due date rule, the
weighted shortest processing time (WSPT) rule, the two-level
batch scheduling heuristic, and the simulated annealing method.

Priority rules are widely applied to production scheduling with
tardiness criteria. earliest due date (EDD), shortest processing
time (SPT), critical ratio (CR) and minimal slack (MS) are four
simple rules for this area. WSPT rule usually performs reasonably
with heavy load and tight due date allowance. Rachamadugu and
Morton [27] developed a look-ahead rule for the single-machine
weighted-tardiness problem called the Apparent Tardiness Cost

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cor.2011.07.019

n Corresponding author. Tel.: þ86 10 62785584; fax: þ86 10 62794399.

E-mail addresses: stephen1998@gmail.com (Z. Zhang),

lzheng@mail.tsinghua.edu.cn (L. Zheng), na-li03@sjtu.edu.cn (N. Li),

wangwp@dgut.edu.cn (W. Wang), zhongsy@dgut.edu.cn (S. Zhong),

huks@dgut.edu.cn (K. Hu).
1 Tel.: þ86 769 22256633; fax: þ86 769 22861122.
2 Tel.: þ86 21 34206740; fax: þ86 21 34206477.
3 Tel./fax: þ86 769 22861188.
4 Tel.: þ86 769 22861280; fax: þ86 769 22861122.
5 Tel./fax: þ86 769 22861122.

Computers & Operations Research 39 (2012) 1315–1324

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.07.019
mailto:stephen1998@gmail.com
mailto:lzheng@mail.tsinghua.edu.cn
mailto:na-li03@sjtu.edu.cn
mailto:wangwp@dgut.edu.cn
mailto:zhongsy@dgut.edu.cn
mailto:huks@dgut.edu.cn
dx.doi.org/10.1016/j.cor.2011.07.019
dx.doi.org/10.1016/j.cor.2011.07.019


(ATC) rule. Volgenant and Teerhuis [37] showed that the ATC rule
outperformed EDD and WSPT in single-machine weighted
tardiness problems. Carroll [7] proposed the original COVERT rule
for minimizing average tardiness and Vepsalainen and Morton
[36] extended it to the weighted COVERT rule for coping with
mean weighted tardiness criterion, as we call WCOVERT in this
paper. Russell et al. [28] conducted comparative analysis of the
COVERT rule within the context of machine-constrained job shop
and varying degree of due-date tightness. The results showed that
COVERT outperforms the truncated SPT rule, the dynamic
slack rule and MDD rule in most instances. ATC and WCOVERT
integrate many existing rules and extend them with ‘looking
ahead’ information. Vepsalainen and Morton [36] tested several
dispatching rules, e.g. First Come First Served (FCFS), EDD,
Slack per Remaining Processing Time (S/RPT), WSPT, ATC and
WCOVERT, with job shop problems with weighted tardiness
criteria. The results indicated that ATC and WCOVERT are superior
to the other rules. Baker and Bertrand [4] developed the MDD rule
for minimizing unweighted tardiness. Kanet and Li [19] general-
ized MDD to Weighted Modified Due Date (WMDD) to deal with
weighted tardiness criteria and showed that WMDD, ATC and
WCOVERT give similar results in many test cases.

In most of the previous studies, the release dates of all jobs are
known and the assumption of a common due date is made. In this
paper, we address a dynamic unrelated parallel machine schedul-
ing problem with a mean weighted tardiness objective. There are
n types of jobs and they dynamically arrive in independent
Poisson processes. Therefore, the arrival time and the due date
of each job are stochastic. We apply a reinforcement learning (RL)
method to solve this problem. We introduce basic concepts of
reinforcement learning and its application in Section 2, formulate
the unrelated parallel machine scheduling problem in Section 3,
present the detailed R-learning algorithm in Section 4, conduct
computational experiments in Section 5 and draw conclusions in
Section 6.

2. Reinforcement learning

Reinforcement learning is a machine learning method which is
widely used in the area of artificial intelligence. Reinforcement
learning is a model in which an agent learns to select optimal or
near-optimal actions for achieving its long-term goals through
trial-and-error interactions with dynamic environment. In this
paper we address RL problems of undiscounted continuing tasks.
Sutton and Barto [33] defined four key elements of RL methods: a
policy, a reward function, a value function and a model of the
environment. A policy specifies the agent’s action in each state. A
reward function specifies the payment on transition from one
state to another. A value function specifies the value of a state or a
state-action pair indicating its desirability in the long run. It is the
expected average reward for each decision time step. Given the
current state and a specific action, a model of the environment
predicts the next state and the next reward with probability. RL
methods aim to find the optimal or a near-optimal policy
that maximizes the expected value of every state or state-action
pair by learning from interactions between the agent and its
environment.

Specifically, the agent and the environment interact at each
decision time step. The agent perceives the current state sq of the
environment at decision time step q and then selects an action
atAA(sq) to perform according to the value of sq, V(sq), or the value
of state-action pair (sq,aq), Q(sq,aq), following a specific policy pq,
where A(sq) denotes the set of available actions at state sq. The
action causes a change in the environment. In the next decision
time step, the environment transfers into a new state sqþ1 and the

agent receives an immediate reward rqþ1 that is used to pay for or
penalize the selected action. Then by iterations state values or
state-action values are updated towards the optimal ones and
the policy is improved using the rewards. These interactions
between the agent and its environment continue until the agent
learns a policy that maximizes the average reward R, defined as
follows:

R¼ lim
u-1

Xu

q ¼ 1

rq=u, ð1Þ

where u is the number of decision time steps.
Schwartz [29] proposed the original R-learning algorithm, an

average-reward RL algorithm. Tabular R-learning updates action
values using the following formula:

Q ðs,aÞ ¼Q ðs,aÞþa½r�rþmax
a0

Q ðs0,a0Þ�Q ðs,aÞ�, ð2Þ

where a (0oar1) is the learning rate, r is the immediate reward
and r is an approximation of Rp. Rp is the value function of policy
p, i.e. the expected reward per decision time step under policy p.

Mahadevan [24] carried out detailed sensitivity analysis of
R-learning and suggested that R-learning is quite sensitive to
exploration strategies. Das et al. [12] presented another average-
reward RL algorithm called Semi-Markov Average Reward Tech-
nique (SMART) and applied it to inventory control. Gosavi [17]
extended the SMART to relaxed-SMART and proved its conver-
gence. All the above algorithms are based on value iteration.
Gosavi [16] proposed a policy iteration based RL algorithm for
average reward, which was proved to converge and obtain
optimal solutions under specific conditions. So far, most of
convergence analysis assumes that the average-reward RL
algorithms are in a tabular form. The above methods are model
free. Tadepalli and Ok [34] proposed a model-based average-
reward RL algorithm, H-learning and demonstrated that it con-
verged quickly and robustly. They employed local linear regres-
sion for value function approximation and applied it to AGV
scheduling. Paternina-Arboleda and Das [26] used an average-
reward RL algorithm to develop a production control policy. They
compared it with the existing policies on the basis of total average
Work In Process (WIP) and average cost of WIP.

In recent years, RL algorithms have been applied to production
scheduling. Their application covers scheduling in some basic forms
of production systems, such as flow shop [6,9], job shop [3,11], JIT
manufacturing systems [18] and Flexible Manufacturing
Systems(FMS). Q-learning and TD(l) are the two primary RL methods
used in production scheduling. Wang and Usher [38] applied
Q-Learning to a single machine dispatching rule selection problem
to learn the commonly accepted dispatching rules. Singh et al. [30]
proposed a policy gradient method for SMDP with application to call
admission control. Csáji et al. [10] presented an adaptive iterative
distributed scheduling algorithm that operated in a market-based
production control system, where each machine and each job was
associated with its own software agent. So far, average-reward RL
algorithms are seldom applied to production scheduling in literature.

Reinforcement learning makes a basic assumption that the
decision-making problem has Markovian or semi-Markovian
nature. Therefore, the decision and the state or state-action value
are assumed to be a function only of the current state. Moreover,
given the current state and the chosen action, the next state and
the reward can be predicted. Under this assumption, the interac-
tion of an agent and the environment is a Markov Decision
Process (MDP) or a Semi-Markov Decision Process (SMDP).
Fortunately, reinforcement learning is still applicable by con-
structing approximate Markov states even when the decision-
making problem is non-Markov and the information about the
environment is incomplete.

Z. Zhang et al. / Computers & Operations Research 39 (2012) 1315–13241316



Download English Version:

https://daneshyari.com/en/article/10347756

Download Persian Version:

https://daneshyari.com/article/10347756

Daneshyari.com

https://daneshyari.com/en/article/10347756
https://daneshyari.com/article/10347756
https://daneshyari.com

