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a b s t r a c t

This paper presents an algorithm for globally maximizing a sum of convex–convex ratios problem with a
convex feasible region, which does not require involving all the functions to be differentiable and
requires that their sub-gradients can be calculated efficiently. To our knowledge, little progress has been
made for globally solving this problem so far. The algorithm uses a branch and bound scheme in which
the main computational effort involves solving a sequence of linear programming subproblems. Because
of these properties, the algorithm offers a potentially attractive means for globally solving the sum of
convex–convex ratios problem over a convex feasible region. It has been proved that the algorithm
possesses global convergence. Finally, the numerical experiments are given to show the feasibility of the
proposed algorithm.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The fractional programming is one of the most successful fields
today in nonlinear optimization problems. The sum of ratios (SOR)
problem is a special class of optimization between fractional
programs, and has attracted the interest of practitioners and
researchers for at least 30 years. This is because, from a practical
point of view, the (SOR) has a number of important applications.
Included among these are applications in areas such as transpor-
tation planning, government contracting, economics and finance
[1–4]. From a research point of view, the (SOR) poses significant
theoretical and computational difficulties. Even in the simplest
case where the ratios are all linear, i.e., the numerators and
denominators are affine functions, their sum is neither quasicon-
vex nor quasiconcave though each of them has both properties.
This is mainly due to the fact that the (SOR) is a global optimiza-
tion problem, i.e., it is known to generally possess multiple local
optima that are not globally optimal. The sum of ratios problem
therefore fall into the domain of global optimization [5,6]. One can
find the details of this development in Refs. [7–9] and the
corresponding bibliographies appearing therein.

Many global optimization algorithms have been proposed for
solving the linear sum of ratios fractional programs, i.e., the
numerators and denominators are all affine functions and the
feasible region is a polyhedron (see [10–13], for example).

Recently, some solution algorithms have been developed for
solving globally the nonlinear sum of ratios problem. For instance,
Freund and Jarre [14] proposed an interior-point approach for the
convex–concave ratios with convex constraints; Yang et al. [15]
presented a conical partition algorithm for the sum of DC ratios;
Benson [16,17] gave two branch-and bound algorithms for the
concave–convex ratios; Shen et al. [18–21] developed global
optimization algorithms for the nonlinear sum of ratios problem.

In this paper we consider the following sum of ratios problem:

ðPÞ
v¼max ∑

m

j ¼ 1
hjðxÞ ¼ ∑

m

j ¼ 1

f jðxÞ
gjðxÞ

s:t: x∈X;

8><
>:

where fj(x) and gj(x), j¼ 1;…;m, are real-valued convex functions
defined on X, X is a nonempty, compact convex set in Rn, and, for
each j¼ 1;…;m; f jðxÞ≥0 and gjðxÞ40 for all x∈X.

The problem (P) is called a nonconcave fractional program, and
may arise in practical applications, for instance, the maximally
predictable portfolio problem (m¼1) [22], and the projective
geometry problems ðm≥2Þ including multiview triangulation,
camera resectioning and homography estimation [23]. It should
be noted that although the literature on nonconvex optimization
has rapidly increased in recent years, most research papers either
only deal with the theoretical aspects of the problem or are
concerned only with finding Kuhn–Tucker points or local solutions
rather than global optima. Also, the problem (P) is different from
the problems considered in [13–21]. Specially, the feasible set and
each numerator in the objective function in (P) are not the same as
the corresponding ones in [21], although both problem (P) and the
one considered in [21] are the sum of convex–convex ratios
problem. So it is difficult to apply these solution methods in the
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above Refs. [13–21] directly to problem (P) since their algorithms
are based on the oneself structure of the corresponding problems.
As a result, to my knowledge, most of the theoretical and
algorithmic work for problem (P) applies only to single-ratio cases,
i.e., m¼1 (see [24–27]) or to special cases of (P) (see [10–13], for
example). Additionally, Frenk and Schaible [28] and Schaible [9]
have encouraged that more research be done into the solutions of
nonconcave fractional programs.

The purpose of this paper is to present a branch and bound
algorithm for globally solving the nonlinear sum of ratios problem
(P), which does not require involving all the functions to be
differentiable and requires that their sub-gradients can be calcu-
lated efficiently. In the algorithm, the linear bounding functions
related to the objective and constraint functions of (P) are first
formed, based on the characteristics of problem (P). Thus a linear
relaxation programming is then derived for providing an upper
bound of the optimal value to problem (P). The main computa-
tional effort of the algorithm only involves in solving a sequence of
linear programming subproblems that do not grow in size from
iteration to iteration. Additionally, the algorithm uses simplices,
rather than more complicated polytopes, as partition elements in
the branch and bound search. This keeps the number of con-
straints in the linear program subproblems to minimum. Finally,
the convergence of the algorithm is proved and numerical experi-
ments are given to illustrate the feasibility of the algorithm.

The remainder of this paper is organized as follows. The initial
simplex and simplicial partition process, the upper and lower
bounding process and the fathoming process used in this approach
are defined and studied in Section 2. Section 3 presents the
algorithm for solving (P), and shows the convergence property of
the algorithm. In Section 4, we give the results of solving some
numerical examples with the algorithm.

2. Key algorithm processes

In this section, in order to present the branch and bound
algorithm for solving (P), we first explain the four key processes:
successively refined partitioning of the feasible set; estimation of
upper and lower bounds for the optimal value of the objective
function; and deleting procedure over each subset generated by
the partitions.

The partition process consists in a successive simplicial parti-
tion of the initial simplex S0 following in an exhaustive subdivision
rule, i.e., such that any infinite nested sequence of partition sets
generated through the algorithm shrinks to a singleton. A com-
monly used exhaustive subdivision rule is the standard bisection.

The upper bounding process is two-fold. First, for each simplex
S created by the branching process, the upper bounding process
seeks an upper bound for the maximum of the objective function
taken over X∩S. Second, for each step k≥0 of the algorithm, the
upper bounding process seeks an upper bound UBk for the global
optimal value of problem (P).

The lower bounding process consists in estimating a lower
bound LBk for the objective function value by enclosing all feasible
points found while computing the upper bounds of the optimum
of problem (P).

The deleting process consists in deleting each simplex in which
there is no feasible solution for further consideration.

Next, we will give the detail processes, respectively.

2.1. Initial simplex and simplicial partition

The partition process iteratively subdivides an n-dimension
simplex S0 containing X into n-dimension subsimplices. This
process helps the algorithm identifies a location of a global

optimal solution in X for problem (P). Throughout the algorithm,
each simplex created by this branching process is n-dimensional
and will be called an n-simplex.

An initial simplex S0 which tightly encloses X can be con-
structed as follows [29]:

S0 ¼ x∈Rnjxi≥γi; i¼ 1;…;n; ∑
n

i ¼ 1
xi ≤γ

( )
;

where γ ¼maxf∑n
i ¼ 1xijx∈Xg and γi ¼minfxijx∈Xg; i¼ 1;…;n.

Then the vertex set of S0 is

fV0
0;V

0
1;…;V0

ng;
where V0

0 ¼ ðγ1;…; γnÞ and V0
i ¼ ðγ1;…; γi−1; αi; γiþ1;…; γnÞ with

αi ¼ γ−∑
t≠i
γt ; i¼ 1;…;n:

Next, the subdivision of simplices is defined in the following
way. At each stage of the branch and bound algorithm, a sub-
simplex of S0 is subdivided into two simplices by the branching
process. To explain this process, assume without loss of generality
that a subsimplex of S0 to be subdivided is S with the vertex set
fV0;V1;…;Vng. Let c be the midpoint of the longest edge ½Vd;Ve� of
S. Then fS1; S2g is called a simplicial bisection of S, where the vertex
set of S1 is fV0;V1;…;Vd−1; c;Vdþ1;…;Vng, and the vertex set of S2
is fV0;V1;…;Ve−1; c;Veþ1;…;Vng.

It follows easily that this simplicial partition process is exhaus-
tive, i.e., if fSkg denotes a nested subsequence of simplices (i.e.,
Skþ1⊂Sk, for all k) formed by the branching process, then for some
unique point x∈Rn,

⋂
k
Sk ¼ lim

k-∞
Sk ¼ fxg:

2.2. Upper bounding

Let S¼ fV0;V1;…;Vng represent a typical n-simplex created by
the partition process of the algorithm, and let

ŝ ¼ 1
nþ 1

∑
n

i ¼ 0
Vi

denote the barycenter of S. Consider the subproblem

ðPðSÞÞ
vðSÞ ¼max ∑

m

j ¼ 1
hjðxÞ

s:t: x∈X∩S:

8><
>:

To explain how the upper bounding process finds an upper
bound UB(S) for v(S), we first need to give two affine functions
lf Sj ðxÞ and lgSj ðxÞ over S such that

lf Sj ðxÞ≥f jðxÞ and lgSj ðxÞ≤gjðxÞ; ∀x∈S; j¼ 1;…;m:

Notice that S is a simplex and fj(x) is convex. So from [6] it
follows that for each x∈S, lf Sj ðxÞ is a concave envelope for fj(x) over
S given by

lf Sj ðxÞ ¼ ∑
n

i ¼ 0
αif ðViÞ; j¼ 1;…;m; ð1Þ

where x¼∑n
i ¼ 0αiV i with αi≥0 and ∑n

i ¼ 0αi ¼ 1. On the other hand,
since for each j¼ 1;…;m, gj(x) is a convex function on Rn, it follows
that gj(x) has the sub-gradient everywhere in their domains. Thus,
the affine function lgSj ðxÞ : Rn-R is defined for each x∈Rn by

lgSj ðxÞ ¼ gjðŝÞ þ 〈pŝj ; x−ŝ〉 ð2Þ

satisfying

lgSj ðxÞ≤gjðxÞ

for all x∈Rn, where pŝj denotes any sub-gradient of gj at ŝ.
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