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a b s t r a c t

The minmax response time problem (mRTP) is a scheduling problem that has recently appeared in the
literature and can be considered as a fair sequencing problem. This kind of problems appears in a wide
range of real-world applications in mixed-model assembly lines, computer systems, periodic main-
tenance and others. The mRTP arises whenever products, clients or jobs need to be sequenced in such a
way that the maximum time between the points at which they receive the necessary resources is
minimised. The mRTP has been solved in the literature with a greedy heuristic. The objective of this
paper is to improve the solution of this problem by means of exact and heuristic methods. We propose
one mixed integer linear programming model, nine local search procedures and five metaheuristic
algorithms. Extensive computational experiments are carried out to test them.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of fair sequence has emerged independently from
scheduling problems in a variety of real-life context: among
others, mixed-model assembly lines (e.g., [1]), computer multi-
threaded systems (e.g., [2]), apportionment of the seats of a House
among the states (e.g., [3]), periodic machine maintenance (e.g.,
[4]), commercial advertisements airings (e.g., [5]) and waste
collection [6]. The common aim of these scheduling problems, as
defined in [7], is to build a fair sequence using n symbols, where
symbol i (i¼1,…,n) must be copied di times in the sequence.
The fair sequence is the one which allocates a fair share of
positions to each symbol i in any subsequence. This fair or ideal
share of positions allocated to symbol i in a subsequence of length
h is proportional to the relative importance (di) of symbol i with
respect to the total copies D of competing symbols (D¼∑i ¼ 1::ndi).
There is no universal definition of fairness, as several reasonable
metrics can be defined according to the specific problem consid-
ered. For a detailed introduction to fair sequences, see [8].

In particular, the metric known as response time refers to the
time that events, jobs, clients, etc. wait for their next turn in
obtaining the resources they need to advance [9].

Salhi and García-Villoria [10] have recently introduced the
minmax response time problem (mRTP). It lies in finding the
sequence that minimises the maximum response time (maxRT).
Formally, let ti be the ideal or average distance between two
consecutive copies of symbol i (ti ¼D=di). And let S be a solution of

an instance in the mRTP that consists of a circular sequence of D
copies (S¼ s1s2…sD), where sh is the copy placed in position h of
sequence S. For each symbol i in which di≥2, let tik be the distance
between the positions in which the copies k+1 and k of symbol i
are found. We consider the distance between two consecutive
positions to be equal to 1. Since the sequence is circular, position
1 comes immediately after the last position D; therefore, tidi is the
distance between the first copy of symbol i in a cycle and the last
copy of the same symbol in the preceding cycle. And for all symbol
i in which di ¼ 1, ti1 is equal to ti. The maxRT is the maximum
absolute error with respect to the ideal distances; that is,

maxRT¼ max
n

i ¼ 1
max
di

k ¼ 1
jtik−tij. Note that the symbols i in which di ¼ 1

do not intervene in the computation of maxRT.
For an illustration, consider that n¼ 3 with symbols A, B and C.

Also consider dA ¼ 3, dB ¼ 2 and dC ¼ 2; thus, D¼ 7, tA ¼ 7=3,
tB ¼ 7=2 and tC ¼ 7=2. Any sequence that contains exactly di times
each symbol i∈fA;B;Cg is a feasible solution. For example, the
sequence (A, B, A, C, B, C, A) is a feasible solution, where

maxRT¼maxðmaxðj2−7=3j; j4−7=3j; j1−7=3jÞ;

maxðj3−7=2j; j4−7=2jÞ;maxðj2−7=2j; j5−7=2jÞÞ ¼ 5=3:

Real-life minmax problems are habitually treated in the scien-
tific literature; for instance, location [11], assembly line balancing
[12] and other production problems [13] have minmax objectives.

A problem related to the mRTP, known as response time
variability problem (RTVP), has extensively treated in the last
years. It consists in finding the sequence that minimises the
response time variability (RTV): RTV¼∑n

i ¼ 1∑
di
k ¼ 1ðtik−tiÞ2. The

RTVP has been solved by means of mixed integer linear program-
ming (MILP) [9,14], branch and bound (B&B) [15], heuristics
[10,16], metaheuristics [17] and hyper-heuristics [18].
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On the other hand, to the best of our knowledge, there is only
one reference of the mRTP. In [10], the mRTP is introduced and
solved with a greedy heuristic, but any indicator of the quality of
the obtained solutions is given. Although the heuristic proposed in
[10] was originally designed for the resolution of the RTVP, the
authors could use it to solve the mRTP since a feasible solution of
one problem is also a feasible solution to the another problem
(note that, in both problems, a solution consists of a sequence of di
copies of each symbol i). However, a good solution for the RTVP is
not necessarily a good solution for the mRTP (and vice versa).

Note that the mRTP can be seen as the minmax version of the
RTVP. In some contexts, it is more suitable to solve a problem as a
mRTP rather than RTVP; for instance, in a context of preventive
maintenance. A worker has to grease n machines and each
machine i needs to be greased di times during a horizon of
D¼∑i ¼ 1::ndi unit times. The average time between two consecu-
tive visits to machine i is ti ¼D=di. In the cyclic schedule for the
grease task, it is usually desired that the maximum difference, for
all machines, between ti and the interval time of two consecutive
maintenance services to machine i is as small as possible in order
to reduce the probability of any critical failure.

The objective of this paper is to design exact and heuristic
methods specifically designed to solve the mRTP in order to
overcome the procedures existing in the literature. Specifically,
we propose one MILP model, nine local search procedures and five
metaheuristic algorithms. Because of the link between the mRTP
and the RTVP, we can take advantage of the RTVP literature to
design our methods for the mRTP.

The remainder of this paper is organised as follows. Section 2
proposes a MILP model for the mRTP and a lower bound on the
value of the objective function. Section 3 provides several local
search procedures and metaheuristic algorithms for solving larger
instances beyond the scope of the MILP model. An extensive
computational experiment is carried out, whose results are pre-
sented in Section 4. Finally, Section 5 gives some conclusions with
highlights for future research.

2. Mathematical formulation and a lower bound

The proposed MILP model uses a lower bound (LB) on the mRT
value that is based on the fact that the real distances between
copies ðtikÞ are integer and the ideal distances ðtiÞ may be real. That
lower bound (LB) is calculated as follows:

LB¼max max
n

i ¼ 1
ð⌈ti⌉−tiÞ;max

n

i ¼ 1
ðti−⌊ti⌋Þ

� �
ð1Þ

where ½x� is the operator that returns the smallest integer that is
equal to or greater than x and ⌊x⌋ is the operator that returns the
greatest integer that is equal to or smaller than x.

A first non linear mathematical model is formulated as follows.
Data:

n number of symbols.
di number of copies of symbol i to be scheduled ði¼ 1; :::;nÞ.
D total number of copies, which is also the number of

positions in the sequence: D¼∑n
i ¼ 1di.

ti ideal distance between two consecutive copies of symbol
i ði¼ 1; :::;nÞ: ti ¼D=di.

G1 set of symbols with multiple copies:
G1¼ fi¼ 1; :::;n : di≥2g.

in symbol with the lowest di value such as di≥2:
in¼ argmin

i∈G1
di.

Eik, Lik the earliest and the latest position that can be occupied
by copy k of symbol i (i∈G1;k¼ 1; :::; di):
Eik ¼ k; Lik ¼D−di þ k.

Hik set of positions that can be occupied by copy k of symbol
i (i∈G1; k¼ 1; :::; di): Hik ¼ fh¼ Eik; :::; Likg.

UBi upper bound on the maximum response time of symbol i
(i∈G1): UBi ¼ D−di þ 1ð Þ−ti.

V ordered set of possible values of the objective function:
V ¼ V1∪V2, where V1¼ ⌈ti⌉−ti

� þj : i∈G1; j¼ ⌈LB−
ð⌈ti⌉−tiÞ⌉; :::; ⌊UBi−ð⌈ti⌉−tiÞ⌋

�
and V2¼ ti−⌊ti⌋þ j : i∈G1;

�
j¼ ⌈LB−ðti−⌊ti⌋Þ⌉; :::; ⌊UBi−ðti−⌊ti⌋Þ⌋

�
.

vf the f-th value in the set V (f ¼ 1; :::; jV j).

Variables:

mrt value of the objective function, LB≤mrt≤max
i∈G1

UBi.
yikh∈f0;1g 1 if and only if copy k of symbol i is placed in position h

(i∈G1; k¼ 1; :::; di; h∈Hik).
wf∈f0;1g1 if and only if the objective function value is equal to vf

(f ¼ 1; :::; jV j).

Model:

½MIN� Z ¼mrt ð2Þ

∑
i∈G1

∑
di

k¼ 1j
h∈Hik

yikh ≤1 h¼ 1; :::;D ð3Þ

∑
h∈Hik

yikh ¼ 1 i∈G1 k¼ 1; :::;di ð4Þ

yin11 ¼ 1 ð5Þ

1þ ∑
h∈Hik

h⋅yikh ≤ ∑
h∈Hi;kþ1

h⋅yi;kþ1;h i∈G1; k¼ 1; :::; di−1 ð6Þ

mrt ¼max

max
i∈G1

max
di−1

k ¼ 1

������ ∑
h∈Hi;kþ1

h⋅yi;kþ1;h− ∑
h∈Hik

h⋅yikh

 !
−ti

������
0
@

1
A;

max
i∈G1

������ D− ∑
h∈Hi;di

h⋅yi;di ;h þ ∑
h∈Hi1

h⋅yi1h

0
@

1
A−ti

������
0
@

1
A

0
BBBBBBB@

1
CCCCCCCA

ð7Þ

mrt ¼ ∑
jV j

f ¼ 1
vf ⋅wf ð8Þ

∑
jV j

f ¼ 1
wf ¼ 1 ð9Þ

Objective function (2) minimises the maximum response time.
Constraints (3) and (4) ensure, respectively, that no more than one
copy of each symbol i∈G1 is placed in each position and that each
copy of each symbol i∈G1 is assigned to one and only one position
of the sequence. It is assumed that each copy of symbols i∉G1 are
placed in the positions that are free of symbols i∈G1. Note that the
order in which the symbols i∉G1 are placed is irrelevant since they
do not contribute to the objective function. Constraint (5) fixes the
first copy of symbol in in the first position of the sequence in order
to eliminate symmetric (equivalent) solutions (recall that a solu-
tion is defined by the distances between the consecutive copies of
each symbol rather than by the absolute positions in which the
copies are placed). Constraint (6) ensure the natural order
between copies of the same symbol. Constraint (7) state the value
of the objective function. Constraints (8) and (9) ensure together
that the value of the objective function is one in the set V of its
possible values. Variable mrt and constraints (8) and (9) are not
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