
Static scheduling of directed acyclic data flow graphs onto
multiprocessors using particle swarm optimization

Ahmad Al Badawi a,n, Ali Shatnawi b

a Department of Computer Engineering, Taif University, Al-Taif 21974, P.O. Box 888, Saudi Arabia
b Department of Computer Engineering, Jordan University of Science and Technology, Irbid 22110, P.O. Box 3030, Jordan

a r t i c l e i n f o

Available online 17 April 2013

Keywords:
Combinatorial problems
Multiprocessor scheduling
Particle swarm optimization
NP-complete
Parallel processing
Graph theory

a b s t r a c t

An efficient method based on particle swarm optimization (PSO) is developed to solve the Multiprocessor
Task Scheduling Problem (MPTSP). To efficiently execute parallelized programs on a multiprocessor
environment, a scheduling problem must be solved to determine the assignment of tasks to the
processors, the execution order of the tasks, and the starting time of each task, such that some optimality
criteria are met. The scheduling problem is known as an NP-complete problem even when the target
processors are fully connected and no communication delay is considered among the tasks in the task
graph. The complexity of the scheduling problem depends on the number of tasks (N), the number of
processors (M), the task processing time and the precedence constraints. The Directed Acyclic Graph
(DAG) was exploited to represent the tasks and their precedence constraints. The proposed algorithm
was compared with the Genetic Algorithm (GA) and the Duplication Scheduling Heuristic (DSH). We also
provide a systematic investigation on the effect of varying problem settings. The results show that the
proposed algorithm could not outperform the DSH while it could outperform the GA in some cases.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With many breakthroughs in the VLSI systems, device technol-
ogy, computer architectures, hardware synthesis and software
tools, the demand for multiprocessor systems has vastly increased
in several applications [19]. In such multiprocessor systems, the
scheduling of the tasks is a major step in the design process. On
the other hand, the task scheduling is an important problem in
other areas such as manufacturing, process control, economics,
and operation research [19]. Basically, scheduling is simply to
allocate a set of tasks (N) to resources (M) such that the optimum
performance is obtained by, for example, minimizing the overall
time required to execute all tasks. However, the scheduling
problem is known to be NP-complete for the general case and
even for many restricted cases [3,9]. The difficulty of the problem
is due to the so many factors involved such as the nature of the
task graph, the topology of the target multiprocessor system, and
the uniformity of the task processing time. Because of its compu-
tational complexity, the scheduling problem is usually handled by
heuristic methods which provide reasonable solutions [18].

In a broad sense, scheduling exists in two forms: static and
dynamic. In static scheduling, which is usually done at compile
time, the characteristics of a parallel program (such as task
processing times, communication, data dependencies, and syn-
chronization requirements) are known before the start of program
execution [19]. A parallel program, therefore, can be represented
by a Directed Acyclic Graph (DAG). In dynamic scheduling, only a
few assumptions about the parallel program can be made before
execution, and thus, the scheduling decisions have to be made
dynamically while the program is running [19]. The optimization
of a dynamic scheduling algorithm includes the minimization of
the program completion time as well as the minimization of the
scheduling overhead which constitutes a significant portion of the
cost paid for running the scheduler. In this work, we only address
the static scheduling problem. Hereafter, we refer to static sche-
duling as the scheduling.

Many heuristic methods have been proposed to solve the schedul-
ing problem. These heuristics are highly diverse in terms of their
assumptions about the structure of the parallel program and the
targeted parallel architecture. Common simplification assumptions
include uniform task processing times, zero inter-task communica-
tion times, contention-free communication, full connectivity of parallel
processors, and availability of unlimited number of processors
[19,9,14]. It is obvious that some of these assumptions may not hold
in practical situations. For instance, it is not practical to assume that
the task processing times of an application are uniform, since the

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.03.015

n Corresponding author. Tel.: +962 785466726.
E-mail addresses: a.badawi@tu.edu.sa, caesar.etos@gmail.com (A. Al Badawi),

ali@just.edu.jo (A. Shatnawi).

Computers & Operations Research 40 (2013) 2322–2328

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.03.015
http://dx.doi.org/10.1016/j.cor.2013.03.015
http://dx.doi.org/10.1016/j.cor.2013.03.015
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.03.015&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.03.015&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.03.015&domain=pdf
mailto:a.badawi@tu.edu.sa
mailto:caesar.etos@gmail.com
mailto:ali@just.edu.jo
http://dx.doi.org/10.1016/j.cor.2013.03.015
http://dx.doi.org/10.1016/j.cor.2013.03.015


amount of computations encapsulated in tasks usually vary. It is also a
violation of the physical nature when assuming a zero inter-task
communication delay, and contention free communication.

The Multiprocessor Task Scheduling Problem (MPTSP) is not
new, and the importance of this topic led to a great variety of
intensive studies. Early scheduling algorithms were typically
designed with some simplification assumptions about the DAG
and processor network model [2,6]. For instance, the nodes in the
DAG were assumed to be of unit processing time and zero
communication time. Coffman and Graham [4] developed an
algorithm for generating optimal schedule for arbitrary structured
task graphs with unit-weighted tasks and zero inter-task times for
a system of two homogeneous processors. The complexity of their
algorithm is OðV2Þ and the scheduling process takes OðV2Þ time.
Ibarra and Kim [8] proposed an algorithm which can be used to
schedule a set of tasks without dependencies onto a heteroge-
neous multiprocessor system. Their algorithm, which called min–
min, is a simple heuristic in which the tasks are scheduled based
on their completion time. The one which has the minimum
completion time is assigned to the processor on which it com-
pletes faster. The min–min heuristic is very simple, easy to
implement and it was one of the fastest algorithms. Braun et al.
[1] present a comparison of eleven heuristics for mapping meta-
tasks onto a heterogeneous cluster of processors without taking
into consideration the communication delays. Kruatrachue and
Lewis [12] proposed Duplication Scheduling Heuristic (DSH) algo-
rithm to solve the MPTSP. The main idea behind DSH is to
eliminate communication delays by duplicating some predeces-
sors in different processors so that their children can start as
earlier as possible. The duplication is triggered once an idle time
slot is detected in a processor. For example, if node ni creates an
idle time slot in one processor, the parent node np of this node is
considered to be duplicated, given that it is not scheduled on the
same processor. Several studies have been proposed to solve the
MPTSP using Genetic Algorithms (GA). GAs try to mimic the
natural evolution process and generally starts with an initial
population of chromosomes. Each chromosome represents a
potential solution of the problem. In each generation, the popula-
tion goes through the processes of crossover, mutation, fitness
evaluation and selection. During crossover, parts of two chromo-
somes of the population are exchanged in order to create two
entirely new chromosomes which replace the chromosomes from
which they evolved. Each chromosome is selected for crossover
with a probability of crossover rate. Mutation alters one or more
genes in a chromosome with a probability of mutation rate. A
fitness function evaluates each chromosome, i.e., it decides how
good a particular solution is. In the selection process, the chromo-
somes with highest fitness value are chosen to be carried onto the
next generation, while the rest are dropped out. Jin et al. [9]
present a performance study of nine multiprocessor task schedul-
ing heuristics. They modified the algorithms taking into considera-
tion the precedence constraint and inter-task communication
times. They evaluated their work using two well-known problems
of linear algebra: LU decomposition and Gauss–Jordan elimination.
Amongst the nine heuristics were the DSH and a general imple-
mentation of GA described above. They found that the DSH had
provided short scheduling time with the shortest makespan, but at
the expense of duplicating the tasks on multiple processors. We
care most about this study as we compare our algorithmwith their
DSH and GA algorithms.

In this paper, we address the MPTSP with the following
properties:

� Precedence constrained task graphs.
� DAGs are used to model the problem.
� Non-zero inter-task communication time.

� The target system consists of a fixed number of homogeneous
processors.

� The processors are fully connected with contention free network.

This paper is organized as follows. First, we present the problem,
the model used, and some related definitions. A detailed demonstra-
tion of the algorithm is presented in Section 3. In Section 4, we present
the simulation environment, the test beds, and the simulation results.
Finally, Section 5 concludes this work and provides the future work.

2. Problem formulation

As mentioned above, the objective of task scheduling is to
minimize the overall program finish-time by proper allocation of
the tasks to the target processors. Scheduling is done in such a
manner that the precedence constraints among the program tasks
are preserved. The overall finish-time of a parallel program is
commonly called the schedule length or the makespan [19]. Here,
we review some basic definitions.

2.1. Multiprocessor scheduling

The scheduling problem can be divided into two sub-problems:
processor allocation and finding the start time of each task.
Processor allocation is the process of finding nodes order and
which processor each node is assigned to. Given the optimal
processor allocation, the start time of each task can be computed
using the End technique, which will be covered in Section 3, in
polynomial time. This implies that the scheduling problem can be
simplified to finding the nodes order and the processor allocation
which still known as NP-hard problem [19].

2.2. Directed acyclic graph model

A parallel program can be represented by a DAG GðV ; EÞ, where
V is a set of nodes and E is a set of directed edges. A node in the
DAG represents a task composed of a set of instructions that must
execute sequentially on the same processor without pre-emption.
Hereafter, we will use the terms node and task interchangeably.
The weight of a node ni is called the processing time and is
denoted by wðniÞ. An edge in the DAG, identified by its end nodes
ðni;njÞ, represents the communication link from node ni to node nj,
and specifies the precedence constraints among these two nodes.
The weight of an edge is called the communication time of the
edge and is denoted by cðni;njÞ. The source node of an edge is
called the parent node while the sink node is called the child node.
A node with no parent is called an entry node and a node with no
child is called an exit node [19,9,18,10].

The precedence constraints of a DAG dictate that a node cannot
start execution before it gathers all of the messages from its parent
nodes. The communication time between two tasks assigned to
the same processor is assumed to be zero. If node ni is scheduled
to run on some processor, then STðniÞ and FTðniÞ have to be
computed, where STðniÞ and FTðniÞ denote the start-time and
finish-time of node ni, respectively. After all the nodes have been
scheduled, the schedule length, makespan, is determined by
maxðFTðniÞÞ for all nodes on all processors. The goal of an optimal
scheduling algorithm is to minimize this parameter. A simple DAG
with 10 tasks is illustrated in Fig. 1. As we can see in the figure,
each node has two attributes, the processing time: which is the
time the task will take once executed, and the node height: which
is the number of edges from the node to the entry node.

A. Al Badawi, A. Shatnawi / Computers & Operations Research 40 (2013) 2322–2328 2323



Download English Version:

https://daneshyari.com/en/article/10347917

Download Persian Version:

https://daneshyari.com/article/10347917

Daneshyari.com

https://daneshyari.com/en/article/10347917
https://daneshyari.com/article/10347917
https://daneshyari.com

