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a b s t r a c t

Discovering the conditions under which an optimization algorithm or search heuristic will succeed

or fail is critical for understanding the strengths and weaknesses of different algorithms, and for

automated algorithm selection. Large scale experimental studies – studying the performance of a

variety of optimization algorithms across a large collection of diverse problem instances – provide the

resources to derive these conditions. Data mining techniques can be used to learn the relationships

between the critical features of the instances and the performance of algorithms. This paper discusses

how we can adequately characterize the features of a problem instance that have impact on difficulty in

terms of algorithmic performance, and how such features can be defined and measured for various

optimization problems. We provide a comprehensive survey of the research field with a focus on six

combinatorial optimization problems: assignment, traveling salesman, and knapsack problems, bin-

packing, graph coloring, and timetabling. For these problems – which are important abstractions of

many real-world problems – we review hardness-revealing features as developed over decades of

research, and we discuss the suitability of more problem-independent landscape metrics. We discuss

how the features developed for one problem may be transferred to study related problems exhibiting

similar structures.

& 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

For many decades, researchers have been developing ever-
more sophisticated algorithms for solving hard optimization
problems. These algorithms include mathematical programming
approaches, constraint programming, and many heuristics includ-
ing meta-heuristics and nature-inspired heuristics. Experimental
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studies have been conducted to determine which algorithms
perform best, usually based on publicly available collections of
benchmark datasets. The conclusions from these comparisons are
often not insightful [69], limited by the scale of the studies which
typically restrict either the type or quantity of benchmark
problem instances used, or consider only a small number of
algorithms [12]. The no-free-lunch (NFL) theorems [153] tell us
that there does not exist a single algorithm that can be expected
to outperform all other algorithms on all problem instances. If a
study demonstrates the superiority of one algorithm over a set of
other algorithms, then one may claim that there are probably
untested problem instances where we could expect this algorithm
to be outperformed. A description of the conditions under which
an algorithm can be expected to succeed or fail is rarely included
in the study [41].

The true value of good experimental studies lies in their ability
to answer two key questions. The first question is: which algo-

rithm in a (broad) portfolio is likely to be best for a relevant set of

problem instances? Useful are studies where diverse algorithms
are compared across enough instances (making statistical conclu-
sions valid), with the types of instances matched to the interests
of the study (e.g. real-world instances, or intentionally challen-
ging instances [88]). A good experimental study can uncover
relationships between features of instances and algorithmic
performance. The outcome can be an automated algorithm selec-
tion model predicting the algorithm from a given portfolio that is
likely to be best for a given instance. The second question that can
potentially be addressed by good experimental studies is a more
general and far-reaching one: for which types of problem instances

can we expect a given algorithm in a portfolio to perform well, and

why? Answers to this second question hold the key to under-
standing the strengths and weaknesses of algorithms, and have
implications for improved algorithm design.

These questions have been raised by various research com-
munities. In the meta-heuristics community statements such as
‘‘currently there is still a strong lack of understanding of how
exactly the relative performance of different meta-heuristics
depends on instance characteristics’’ [134] have highlighted the
need to measure key characteristics of optimization problems and
explore their relationship with algorithm behavior. In the artifi-
cial intelligence community, a similar concept has lead to the
development of algorithm portfolios, whereby knowledge of the
relationship between instance characteristics and algorithm per-
formance based on training data is used to build a regression
model to predict which algorithm is likely to perform best for a
new problem instance [59,85]. This approach of selecting the
likely best algorithm from a portfolio after gaining knowledge
into that relationship has been most successful, winning the 2007
SAT (constraint satisfaction) competition [155]. There have also
been extensions of these ideas beyond static or off-line algorithm
selection to reactive search [14] and racing algorithms [19,91],
where knowledge of the characteristics or features of the search
space is exploited to fine-tune or re-select an algorithm during
run-time [51,119,133].

A key challenge with all of these approaches is to adequately
characterize the problem instance search space by devising
suitable measures. In order for any useful knowledge to be
learned from modeling the relationships between problem
instance characteristics and algorithm performance we need to
ensure that we are measuring features of the problem instances
that are revealing of the relative hardness of each problem
instance as well as revealing of the strengths and weaknesses of
the various algorithms.

So how can we determine if an optimization problem, or an
instance, is hard or challenging for a particular algorithm? And
what are the characteristics or features of the instance that

present this challenge? The most straightforward features of an
optimization problem instance are those that are defined by the
sub-class of the instance: features like the number of variables
and constraints, whether the matrices storing instance para-
meters are symmetric, etc. There are numerous candidate fea-
tures that can be derived by computational feature extraction
processes applied to instance parameters that often serve well as
proxy measures for instance difficulty. We note here the distinc-
tion between the definition of a feature, and the suitable mea-
surement of that feature.

Measuring hardness of an instance for a particular algorithm is
typically done by comparing the optimization precision reached
after a certain number of iterations compared to other algorithms,
and/or by comparing the number of iterations taken to reach the
best solution compared to other algorithms [154]. More sophis-
ticated measures of hardness of a problem for a particular
algorithm include measuring the fraction of the search space that
corresponds to a better solution than the algorithm was able to
find [89]. These performance metrics may enable us to determine
if an algorithm struggles with a problem instance or solves it
easily, and have been used to demonstrate that there are indeed
classes of problems that are intrinsically harder than others for
different algorithms [89]. However, they do not help us to explain
why this might be the case.

To understand the challenging features or properties of the
problem instance, there have been numerous efforts to character-
ize the objective function and search space, identifying challenges
such as isolation, deception, multi-modality, and features such as
the size of basins of attraction [10,61,87,154], as well as landscape
metrics (reviewed in Section 3) based on analysis of autocorrela-
tion structures and number and distributions of local minima
[108,121]. Obviously these features can only be measured after an
extensive analysis of the landscape, and are not suitable as inputs
to a performance prediction model that seeks to answer our first
question about which algorithm is likely to perform best for a
given instance. They are useful for our second question—for
gathering insights into the relationship between the structure of
the problem and the performance of algorithms for the purposes
of algorithm design and explaining performance. As a preliminary
step for automated algorithm selection though, we need to ensure
that the set of features used to characterize problem instances are
quickly measurable.

Despite the importance of this key task, very little focus has
been given in the literature as to how to construct features for
characterizing a set of problem instances as a preliminary step for
algorithm selection and performance modeling. As early as 1976,
Rice posed the algorithm selection problem [110], defined as
learning a mapping from feature space to algorithm performance
space, and acknowledged the importance of selecting the right
features to characterize the hardness of problem instances. For
any optimization problem there is a variety of problem-specific
metrics that could be used to expose the relative hardness of
problem instances, as recent studies on phase transitions have
shown [1,143]. In addition, we may wish to include metrics to
expose the relative strengths (and weaknesses) of algorithms in
the portfolio. Further, rules of guidance may be appropriate, in
order to select the candidate features that are likely to be most
useful for studying the difficulty of a given optimization problem.

This paper aims to provide a starting point for answering the
critical question: how do we devise a suitable set of hardness-
revealing features and/or metrics for an optimization problem?
We tackle this question by first revisiting the framework for
algorithm selection of Rice [110], presented in Section 2. We have
recently used this framework to tackle our first question focused
on automated algorithm selection for a number of optimization
problems (traveling salesman [126,130], timetabling [129],
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