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a b s t r a c t

Although most of unconstrained optimization problems with moderate to high dimensions can be easily
handled with Evolutionary Computation (EC) techniques, constraint optimization problems (COPs) with
inequality and equality constraints are very hard to deal with. Despite the fact that only equality
constraints can be used to eliminate a certain variable, both types of constraints implicitly enforce a
relation between problem variables. Most conventional constraint handling methods in EC do not
consider the correlations between problem variables imposed by the problem constraints. This paper
relies on the idea that a proper genetic operator, which captures mentioned implicit correlations, can
improve performance of evolutionary constrained optimization algorithms. With this in mind, we
employ a (μ+λ)-Evolution Strategy with a simplified variant of Covariance Matrix Adaptation based
mutation operator along an adaptive weight adjustment scheme. The proposed algorithm is tested on
two test sets. The outperformance of the algorithm is significant on the first benchmark when compared
with five conventional methods. The results on the second test set show that algorithm is highly
competitive when benchmarked with three state-of-art algorithms. The main drawback of the algorithm
is its slightly lower speed of convergence for problems with high dimension and/or large search domain.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Global optimization is an essential part of any engineering,
economics and social system. Since Holland’s [1] ground breaking
work, global optimization approaches inspired by nature have been
widely used. Among those algorithms, population based algorithms
are known for their global search ability and very precise approx-
imation of global solutions despite their relatively slow convergence
for some problems and approximation bias [2].

When solving constrained optimization problems, traditional
optimization techniques generally demonstrate poor global search
performance for non-convex problems, as any local optimal point
can satisfy their convergence condition [3].

Although most of unconstrained optimization problems with
moderate to high dimensions can be easily handled with Evolu-
tionary Algorithms (EA), constrained optimization problems (COPs)
with inequality and equality constraints are very hard to deal with
[4]. The difficulty level also depends on the dimension, number of
inequality and equality constraints as well as structural specifications
of the problem, including sparsity of the feasible domain, the position
of the global solution (for instance, a solution lying on the boundary
of feasible domain), non-separable character of the variables and
nonlinear structure of the objective function. Thus, COPs require an

exhaustive search of the feasible domain [4,5]. Despite the fact that
there have been numerous constraint handling techniques proposed
by researchers [6], there is still a need to design new methods which
have to be computationally efficient and reliable [7]. In the design of
new algorithms most researchers have focused to determine how to
generate feasible individuals while maintaining a reasonable ratio
between feasible and infeasible members in a population so that the
algorithm is able to jump in a sparse feasible domain [8–10].

A COP may consist of many equality and inequality constraints.
The equality type one imposes a strict relation between problem
variables and can be exploited to determine any unknown in terms
of other variables in the equation. However, sometimes the direct
use of them may be impossible or computationally expensive if
equality constraints are not analytically solvable. The imposed
relation originated from an equality constraint is a strong relation
as it narrows down the feasible space drastically.

While the inequality constraints do not allow a direct elimina-
tion of a problem variable, they also establish relations, in a less
strict manner than equality constraints, between the unknowns.
These relations are rather weak relations. The strong and weak
relations between problem variables imposed by the constraints
can be exploited in an indirect way even if they do not allow a
direct exploitation. Most conventional constraint handling meth-
ods in Evolutionary Algorithms (EAs) overlook the following.

� Each inequality and equality constraint implicitly enforce a
relation between variables.

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cor.2013.03.013

n Corresponding author. Tel.: +387 33 957 205; fax: +387 33 957 105.
E-mail addresses: akusakci@ius.edu.ba (A. Osman Kusakci),

mcan@ius.edu.ba (M. Can).

Computers & Operations Research 40 (2013) 2398–2417

www.elsevier.com/locate/caor
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2013.03.013
http://dx.doi.org/10.1016/j.cor.2013.03.013
http://dx.doi.org/10.1016/j.cor.2013.03.013
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.03.013&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.03.013&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cor.2013.03.013&domain=pdf
mailto:akusakci@ius.edu.ba
mailto:mcan@ius.edu.ba
http://dx.doi.org/10.1016/j.cor.2013.03.013
http://dx.doi.org/10.1016/j.cor.2013.03.013


� This relation can be captured by a covariance matrix of the
population and can be exploited to find the global optimum if it
is incorporated to a proper constraint handling method.

This paper relies on the idea that the precision and conver-
gence power of constrained optimization methods can be
improved by taking the covariance matrix of the population into
account, as it considers the strong and weak relations indirectly.
By this way, the population may be allowed to move from a
feasible region to another one along the relation indicated by the
constraints. To obtain the desired behavior, the Covariance Matrix
Adaptation (CMA) based mutation strategy suggested by Hansen
and Ostermeier [11] is employed along with an adaptive penalty
approach based on adaptive segregational constraint handling
evolutionary algorithm (ASCHEA) [8].

The remainder of this paper is organized as follows: in
Section 2, basic concepts and related works will be shortly
discussed, while more attention will be paid to ASCHEA and
CMA. Section 3 describes the proposed method in detail while
Section 4 is devoted to a comprehensive parametric analysis of the
proposed model. The results of the study will be demonstrated
and discussed in Section 5. Lastly, Section 6 concludes the study
and summarizes the findings.

2. Constrained optimization

2.1. Basic concepts

An n dimensional COP can be defined by two components: an
objective function to bemaximized or minimized, and several inequal-
ity and equality constraints. The general structure is defined as

Minor max f x
-

� �
; x
-¼ ½x1;…; xn�T ∈FDSDℝn

subject to

ψ ið x
-Þ≤0; i¼ 1;…; r

ϕjðx
-Þ ¼ 0; j¼ r þ 1;…;m

where S¼ fx-∈ℝnjl≤ x
-
≤ug and F ¼ fx-∈Sjψ iðx

-Þ≤0 and ϕj x
-

� �
¼ 0g,

x
-

is solution vector x
-¼ ½x1;…; xn�T , r is the number of inequality and

m–r is the number of equality constraints. The equality constraints are
usually converted into inequalities by adding a small tolerance ε40

where an equality constraint j is rephrased as
���ϕj x

-
� ����−ε≤0. The same

approach will be used in the present work.

2.2. Related work

As mentioned before, various different techniques have been
proposed to handle COPs. An extended survey can be found in
[6,12,13]. The constrained optimization evolutionary algorithms
(COEAs) can be classified in the following four categories illu-
strated in Fig. 1: feasibility maintenance, penalty function, separa-
tion of constraint violation and objective value, and multiobjective
optimization evolutionary algorithms (MOEA) [12].

Approaches based on feasibility maintenance aim to bring the
individuals to the feasible domain. Repairing infeasible individuals
and homomorphous mapping are two methods that dominate this
category. The repaired individuals are replaced or sometimes used
only for evaluation purposes [14]. To repair infeasible individuals,
problem specific operators must be designed, which may not be an
efficient method in some cases and repair operator may introduce
a strong bias in the search. This may harm the evolutionary
process itself [15]. Homomorphous mapping tries to maintain
the feasibility of population by mapping the feasible domain onto
a hypercube and performing evolutionary operators within the
hypercube. The offspring, guaranteed to be feasible, are then
transferred back to the definition domain [16]. Despite its secure
feasibility maintenance property, homomorphous mapping comes
along with high computational cost because back and forward
mapping must be conducted through some optimization methods
for each individual [12,16].

The methods based on penalty functions are the most popular
approaches, thanks to their simplicity and easy application [8].
They rely on penalizing the infeasible individuals, so that a feasible
point will be superior to an infeasible point of comparable fitness.
However, two main questions arise in penalty-based method:

� How to adjust the penalty weights for each constraint.
� How to maintain a certain percentage of infeasible individuals

in the population, which allows determining the global opti-
mum in highly sparse feasible space.

The penalty weights must be tuned very carefully in order to
avoid the above mentioned two problems. A small penalty level
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Fig. 1. The taxonomy of COEAs.
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