
A branch and bound algorithm for minimizing total completion time on
a single batch machine with incompatible job families and dynamic arrivals

Shiqing Yao, Zhibin Jiang n, Na Li

Department of Industrial Engineering & Logistics Management, Shanghai Jiao Tong University, Shanghai, China

a r t i c l e i n f o

Available online 1 July 2011

Keywords:

Branch and bound algorithm

Dynamic arrivals

Batch scheduling

Incompatible job families

a b s t r a c t

In this paper, we consider a single batch machine scheduling problem with incompatible job families

and dynamic job arrivals. The objective is to minimize the total completion time. This problem is

known to be strongly NP-hard. We present several dominance properties and two types of lower

bounds, which are incorporated to construct a basic branch and bound algorithm. Furthermore,

according to the characteristics of dynamic job arrivals, a decomposed branch and bound algorithm is

proposed to improve the efficiency. The proposed algorithms are tested on a large set of randomly

generated problem instances.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

This paper addresses a batch processor scheduling problem.
Jobs arrive dynamically and thus have unequal ready times. Jobs
in the same family have the same process time and could be
processed simultaneously in batches. The batch size may vary
by jobs while the maximum size is given. The objective is to
minimize the total completion time. This problem arises from the
batch scheduling problem in wafer fabrications, where typical
furnace machines serve as batch tools. In general, the capacity of
furnace machines is six lots with each containing 25 wafers. Lots
belonging to different process recipes cannot be batched together,
since their process parameters (i.e., pressure and temperature)
are quite different. This leads to incompatible job families.

Referring to [1], we denote the problem of interest as

19p-batch, rj, bon, incompat9
X

Cj

This problem belongs to NP-hard in strong sense based on
reductions to the known NP-hard problem in strong sense:
minimizing the total completion time on a single machine with
unequal ready times [2].The problem we are interested in
involves two interrelated decision making problems: (1) when
to group jobs into batches; and (2) how to sequence the batches
after they form. Due to dynamic arrivals, when to batch jobs
indirectly affects sequencing decisions. On the other hand, the
sequencing results also influence batching decisions.

In this paper, we study the structural properties of the
problem, develop two types of lower bounds, and propose a
branch and bound (B&B) algorithm and its improved version.

2. Literature review

Batch scheduling problems can be categorized from different
aspects. Readers could refer to [3,4] for the details. In this section,
we review the highly related works.

As for identical job family, many relevant problems are
solvable. Glassey and Weng [5] proposed a dynamic scheduling
algorithm for minimizing the average waiting time. Webster
and Baker [6] developed a dynamic programming algorithm for
19p-batch, bon, rj, pj¼p9

P
Cj with O(n3) overall worst-case time

complexity. It is worthwhile to note that this problem is a special
case of the problem of interest. Furthermore, Baptiste [7] showed
that 19p-batch, bon, rj, pj¼p9

P
wjCj also belongs to P.

As for multiple job families, there exist two batch types,
i.e., compatible job families and incompatible job families. For
compatible job families, jobs from different families can be
processed together. Jobs in a batch start and complete at the
same time, and the process time of a batch is equal to the largest
process time among the jobs in its batch. Chandru et al. [8]
studied the optimality structure of 19p�batch, bon9

P
Cj and

proposed a B&B algorithm. For the case of m jobs families,
Chandru et al. [8] presented an O(m3bmþ1) time dynamic
programming algorithm, and Brucker et al. [9] designed a
dynamic programming algorithm with a further gain in efficiency,
which only requires O(b2m22m) time. In consideration of weighted
jobs, Uzsoy and Yang [10] developed a B&B algorithm and
several heuristics for 19p�batch, bon9

P
wjCj. In recent years,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cor.2011.06.003

n Corresponding author. Tel.: þ86 13918891152; fax: þ86 2134206065.

E-mail address: zbjiang@sjtu.edu.cn (Z. Jiang).

Computers & Operations Research 39 (2012) 939–951

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.06.003
mailto:zbjiang@sjtu.edu.cn
dx.doi.org/10.1016/j.cor.2011.06.003
dx.doi.org/10.1016/j.cor.2011.06.003


the research emphasis has been shifted to batch scheduling
with dynamic job arrivals. Lee et al. [11] considered two special
cases of 19p�batch, rj, bon9Cmax and proposed some efficient
heuristics for the general case. Wang and Uzsoy [12] developed a
meta-heuristic algorithm using random keys genetic algorithm
for 19p-batch, rj, bon9Lmax and improved not only the approx-
imate ratio but the running time as well.

Batch scheduling with incompatible job families refers that
jobs from different families cannot be processed together. This
type of batch processing commonly exists in front-end opera-
tions. The earliest studies mainly focused on dynamic scheduling
problems. A number of heuristics for minimizing total waiting
time have been developed by Fowler et al. [13,14], Weng and
Leachman [15], Robinson et al. [16], Van der Zee et al. [17], and
Cigolini et al. [18]. As for static scheduling problems, they can also
be divided into problems with equal ready times and problems
with dynamic job arrivals [19]. With respect to equal ready times,
most problems seem to be easy. For example, the Greedy Batching
(GRB) algorithm can obtain an optimal solution of 19p-batch, bon,
incompat9Cmax, the GRWC (Greedy Weighted Completion Time)
algorithm can solve 19p-batch, bon, incompat9

P
wjCj, and the

GREDD (Greedy Earliest Due Date) algorithm can solve 19p-batch,
bon, incompat9Lmax. All of the above problems belong to P

because their relevant algorithms are polynomially solvable. As
the problem of minimizing

P
wjTj on a single machine is NP-hard,

many batch scheduling problems related to the tardiness-related
objectives are difficult to solve. Mehta and Uzsoy [20] proposed
a dynamic programming algorithm and some heuristics for
19p-batch, bon, incompat9

P
Tj. Perez et al. [21] developed a

two-stage combined heuristic for 19p-batch, bon, incompat9P
wjTj. In consideration of unequal ready times, 19p-batch, rj,

bon, incompat9Cmax is reducible to the batch problem of mini-
mizing Lmax with equal ready times. Hence, it belongs to P. Except
for that, nearly all the problems with dynamic job arrivals belong
to NP-hard in strong sense. Hence, the techniques for solving NP-
hard problem were used. For example, Uzsoy [19] developed
several heuristics for 19p-batch, rj, bon, incompat9Lmax. Kruz
and Masonz [22] developed a heuristic algorithm for 19p-batch,
rj, bon, incompat9

P
wjTj. Based on this heuristic, Tangudu and

Kurz [1] proposed a B&B algorithm. As for parallel machines
problems, there are also some gratifying results. Venkataramana
and Srinivasa Raghavan [23] built up a mix integer programing
and provided two heuristics for minimizing

P
wjCj, and Chiang

et al. [24] developed a memetic algorithm to minimize
P

wjTj.
We observe that the problem focused in this paper is a general

case of 19p-batch, bon, rj, pj¼p9
P

Cj, while it is a special case of
19p-batch, rj, bon, incompat9

P
wjTj. Since the problem of interest

is closely related to the former one, we can adopt the existing
results achieved by Webster and Baker [6] to construct the
optimality properties. On the other hand, we can design its
structural properties, dominance properties, and lower bounds
in better ways for it is easier than the latter one.

3. Basic definitions and structural properties

The problem focused in this paper is to schedule a job set N on
a single batch machine with maximum batch size b. Let K be the
family set and Nk the job set of family k. Jik denotes the ith job of
family k, and rik is its ready time or arrival time. pk stands for the
process time of family k. W.l.o.g, we assumes that rikZri0k if iZ i0.

In the B&B algorithm, a node of the search tree represents a
partial schedule which contains the scheduled jobs. The following
properties derived from [6] help to make clear the optimal
structure of a partial schedule. For completeness, they are briefly
repeated as below.

Property 1. (WB) There exists an optimal schedule, where each time

that a group of consecutive batches begins processing is equal to a job

arrival time.

Property 2. (WB) There exists an optimal schedule, where the lots

(of each family) are batched as fully as possible at each batch, and the

batches (of each family) are sequenced in non-decreasing order of

arrival time.

Remark 1. Although Properties 1 and 2 are obtained according
to a batch scheduling problem with single job family, they are
also suitable for the problem with incompatible job families.
Property 1 helps us to confine the optimal batch start times to a
discrete set. Property 2 indicates that each batch size of the
optimal schedule can be easily determined once the start time of
the batch as well as its job family is assigned.

According to the properties, the primary notations and defini-
tions are given as follows. Additional ones will be introduced
when necessary.

A partial schedule sy is defined as follows: sy:¼s[1]Js[2]?
s[l]?s[y], where s[l]:¼(t[l], k[l]). In details, s[l] is the batch in position
l in the sequence of batches. t[l] is the start time of s[l], and k[l] is
the job family of s[l]. C(sy):¼t[l]þpk l½ �

, where C(sy) is the comple-
tion time of the last batch in sy. Note that C(sl)rt[lþ1] is satisfied
for lA{0,1,2,y, y�1}. J(sy) and N\J(sy) are, respectively, a set of
the jobs in sy and a set of the jobs not included in sy. A partial
schedule sy is referred to as a schedule when N\J(sy)¼Ø. We
denote by O(sy) the schedule obtained by appending to sy the
optimal schedule of the unscheduled jobs. RF(sy) is the remaining
family set of the jobs in N\J(sy). Jk(sy) and Nk\Jk(sy) are the job set
of family k in sy and the job set of family k not included in sy,
respectively. F(sy) stands for the total completion time of the jobs
in sy. Furthermore, F(D9s) is defined to be the total completion
time for the job set D in schedule s. And, F[x9s] and J[x9s] are,
respectively, the total completion time of the jobs in the xth batch
and its associated job set. Uk(t1,t2) is the number of released jobs
of family k during (t1,t2]. As for a partial schedule sy, Rk(t9sy)
stands for the released jobs of family k in N\J(sy) at time t.

According to Property 1, for any partial schedule sy, the
potential next batch time which contains h jobs of family k,
tk(h9sy), can be calculated as follows:

tkðh9syÞ ¼
CðsyÞ if hrRkðCðsyÞ9syÞ

minft9UkðCðsyÞ, tÞ ¼ h�RkðCðsyÞ9syÞg if h4RkðCðsyÞ9syÞ

(

According to Property 2, we denote by Bk(t9sy) the batch size if
family k are chosen at time t. Clearly, Bk(t9sy)¼min(Rk(t9sy),b).

For convenience, readers can find the notations in Appendix A.
When there is no ambiguity, C(sy), J(sy), N\J(sy), Jk(sy), Nk\Jk(sy),
RF(sy), Rk(t9sy), tk(h9sy), and Bk(t9sy) are simplified into Cy, J, N\J,
Jk, Nk\Jk, RF, Rk(t), tk(h), and Bk, respectively.

Let sy and sy0 be the two partial schedules, we say that sy

dominates sy0 or sy0 is dominated, if

FðOðsyÞÞrFðOðsy0 ÞÞ

We denote by batch (t, k) the child node where the batch
belongs to family k and is processed at time t. In the B&B

algorithm, the branch procedure is to create child nodes from
each active node. Each child node is created by appending the
next scheduled batch to the end of the partial schedule sy. In this
problem, the number of potential child nodes is9K9b in worst case.
Clearly, as the number of jobs increases, the total number of
nodes increases greatly as well. To stop searching those non-
optimal child nodes as early as possible, dominance properties
and efficient lower bounds are indispensable. Related techniques
are discussed in the following sections.

S. Yao et al. / Computers & Operations Research 39 (2012) 939–951940



Download	English	Version:

https://daneshyari.com/en/article/10348031

Download	Persian	Version:

https://daneshyari.com/article/10348031

Daneshyari.com

https://daneshyari.com/en/article/10348031
https://daneshyari.com/article/10348031
https://daneshyari.com/

