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a b s t r a c t

More than half a century has passed since Bowman and Dantzig (1959) [13,14] introduced their models

for preemptive shop scheduling problems. A more efficient model seems to be needed to address all the

aspects involved in the problem. We introduce a new Integer Linear Programming (ILP) formulation as a

new method for solving the preemptive Job Shop Scheduling Problem (pJSSP). The dimension of the

new model, unlike those of the existing ones, depends solely on the number of jobs and machines

irrespective of processing times. The proposed model is used as an optimal, two-phase approach. In

phase one, the model is solved to obtain the start and completion times of each operation on each

machine. In phase two, a simple algorithm in O(mn log n) steps is used to turn these times into a

complete and optimal schedule. Different preemptive flow shop problems are studied as special cases

of the pJSSP while some related properties are also discussed. Finally, the higher efficiency of the

proposed model is verified both theoretically and computationally through its comparison with

conventional methods commonly in use.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In job shop environments, system efficiency is influenced to a
great extent by scheduling since a wide variety of products are to
be produced and a specific operational route is to be assigned to
each product. On the other hand, one of the most important
assumptions in scheduling is preemption that can be used to
improve the objective function. Preemption is allowed in machin-
ing operations where the amount of processing a job receives is
not lost after preemption. In addition to its manufacturing
applications, pJSSP has found applications in such project manage-
ment areas as allocating of human resources to different project
activities. Guo et al. [1] used a special case of this problem in the
apparel industry and Anderson et al. [2] used the 2-machine
version of the problem to schedule computer systems. Preemption
may also decrease computational complexity in some problems,
but not in the Job Shop Scheduling Problem (JSSP). For example,
the two machine pJSSP with only three jobs (J2=n¼ 3,prmp=Cmax)
is an NP-hard problem but the non-preemptive version of this
problem with any arbitrary number of jobs (J2=n¼ k=Cmax) is
solvable in a polynomial time [3]. The non-preemptive JSSP
becomes an NP-hard problem when there are at least three jobs
and three machines (J3=n¼ 3=Cmax) [4].

Mathematical programming is an exact method used to solve
scheduling problems. By this method, a basic framework is
provided for a wide variety of problems and different objective
functions and constraints are then introduced into the model.
Furthermore, in a mathematical model aimed at minimizing the
objective function, the feasible region increases if certain con-
straints are relaxed so that the value of the objective function may
decrease and a lower bound may be obtained for the problem.
Feasible solutions obtained by other methods can also be some-
times used as a starting point for solving the mathematical
models. Integer Programming (IP) models have become increas-
ingly important in recent years thanks to the development of
efficient algorithms, robust software systems, and advanced com-
puters. The deadlock in the field was probably due to the absence
of these developments in the past. For instance, the IP model for
the non-preemptive JSSP proposed by Manne [5] was recently
improved by Liao and You [6] after 30 years, which encouraged
more researchers to develop models for non-preemptive pro-
blems. Pan and Chen [7] developed a Mixed Binary Integer
Programming (MBIP) model for the reentrant JSSP based on the
models developed by Manne [5] and Liao and You [6]. Dessouky
and Leachman [8] developed dynamic models based on previous
models for a problem with more than one machine of each type
but with identical products. Fattahi et al. [9] developed a math-
ematical model and a heuristic approach for the flexible JSSP
(FJSSP). Gomez et al. [10] proposed an IP model for the FJSSP in
which certain assumptions including limited intermediate buffers,
similar parallel machines, recirculation, and flexible processing
routes were considered. They used the commercial MILP software
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for solving the model. Ding et al. [11] and Rong-Hwa [12]
developed a meta-heuristic and mathematical model by consider-
ing dissimilar parallel machines with internal due dates to mini-
mize earliness and tardiness.

Mathematical models for preemptive job shop scheduling
problems have received far lower attention than the non-pre-
emptive ones to the extent that, now after 50 years, the models
introduced by Bowman [13] and Dantzig [14] not only still retain
their original forms but have also been pushed into neglect. This
may be due to their low efficiency and their failure to solve even
small sized problems. The dimension of these models depends not
only on the number of jobs and machines but also on the
scheduling horizon (T). T is an upper bound for the makespan
which is, in turn, a function of processing times. Hence, the
dimension of the existing models depends on processing times.
The value of T should be determined at the beginning of the
solution process; for example, it can be assumed to be equal to
the total processing time. Hence, the restriction on T makes it
impossible to solve problems of even the smallest size with large
processing times. A new mathematical model is, therefore,
required whose dimension does not depend on processing times.
It is the objective of this paper to develop one such model.
Throughout this paper, the scheduling problem is designated by
the triple notation a=b=g [15].

The paper is organized as follows. In Section 2, the proof for
the theorems that form the basis of our two-phase approach will
be presented. In Section 3, a primitive NonLinear Programming
(NLP) model will be developed for the problem J=prmp=Cmax, and
in Section 4, the model will be converted into a final MBIP one by
introducing certain binary variables and constraints. In Section 5,
the flow shop problems will be studied as special cases of job
shop problems for which our proposed model is especially
tailored. In Section 6, the dimensions of the proposed model will
be compared with those of the Bowman and Dantzig’s. In Section
7, the new model will be employed for solving different problem
sizes and the results obtained will be compared with those from
the best model available. Finally, in Section 8, conclusions will be
presented and some suggestions will be made for future studies.

2. Problem definition and properties

In a pJSSP, there are n jobs and m machines. Each job has its
own sequence of operations, and each operation should be
processed on a particular machine. The objective is to schedule
operations on machines so that maximum completion time is
minimized. Problem assumptions can be stated as follows. Pro-
cessing times are deterministic and sequence-independent. All
jobs are ready to be processed at time zero. Only one job can be
processed on each machine at a given time. Each job visits each
machine once at most and preemption is allowed, i.e. processing
of any operation may be interrupted to be resumed later. First,
consider the following notations:

n number of jobs
m number of machines
Ji job number i ði¼ 1,2,. . .,nÞ
J set of all jobs (J¼{Ji9i¼1,2,y,n})
Mk machine number k

pi k processing time of Ji on Mk (i¼1,2,y,n , k¼1,2,y,m)
qi l k 1 if the lth operation of Ji requires Mk; 0, otherwise

( i¼1,2,y,n , l¼1,2,y,m , k¼1,2,y,m)
A an arbitrary schedule for the problem j=prmp=Cmax

Ak schedule on Mk in A, so A¼{A1,A2,y,Am}
SA

ik start time of Ji on Mk in Ak (i¼1,2,y,n , k¼1,2,y,m)

CA
ik completion time of Ji on Mk in Ak (i¼1,2,y,n , k¼

1,2,y,m)
RA

ik ready time of Ji on Mk which is determined according to
schedule Ak; RA

ik ¼ SA
ik

‘‘Ready time’’ is the time when a job becomes ready to be
processed.

DA
ik due date of Ji on Mk determined according to schedule

Ak; DA
ik ¼ CA

ik.
Tmax maximum tardiness
B a schedule for the problem J=prmp=Cmax, where the

schedule on any machine k(k¼1,2,y,m) is obtained by
using times RA

ik and DA
ik, and optimally solving the

problem 1=RA
ik,prmp=Tmax.

Bk schedule on Mk in B, so B¼{B1,B2,y,Bm}
CA

max maximum completion time or makespan of schedule A;
CA

max ¼max1r irn, 1rkrm CA
ik

CB
max maximum completion time or makespan of schedule B;

CB
max ¼max1r irn, 1rkrm CB

ik

TBk
max maximum tardiness in schedule Bk; max1r irnðmax

f0,CB
ik�DB

ikgÞ

According to the definition, only times SA
ik and CA

ik are used in
deriving schedule B from schedule A; preemption times in
schedule A have, therefore, no influence on schedule B. In the
following theorems, it is proved that B is a feasible schedule
which observes the condition CB

maxrCA
max.

Theorem 1. For any machine, k, if SA
ik and CA

ik are regarded as RA
ik and

DA
ik, respectively, and the problem 1=RA

ik,prmp=Tmax is solved opti-

mally, then Schedule Bk obtains with TBk
max ¼ 0.

Proof. If a machine k exists such that solving the problem
1=RA

ik,prmp=Tmax for it optimally yields Tmax40, it can be inferred
that there is at least one tardy job in any schedule on machine k.
However, this result is impossible due to Schedule Ak in which
CA

ik ¼DA
ik for every i. Therefore, when the problem 1=RA

ik,prmp=Tmax

is optimally solved on machine k, the jobs are scheduled without
any tardiness. &

Now, it can be shown that schedules Bk, i.e. {B1,B2,y,Bm},
which were separately obtained on different machines, constitute
a feasible schedule for the problem J=prmp=Cmax. In other words,
B¼{B1,B2,y,Bm} is a feasible schedule. Furthermore, it can be
shown that CB

maxrCA
max is valid.

Theorem 2. If schedules, Bk(k¼1,2,y,m), are constructed according

to Theorem 1, then the feasible schedule B with CB
maxrCA

max obtains

for the problem.

Proof. Consider the following:

� In constructing schedules Bk, SA
ik was regarded as RA

ik. So,
SB

ikZSA
ik is true for every i in schedules Bk.

� In constructing schedules Bk, CA
ik was regarded as DA

ik, and
according to Theorem 1, there is no tardy job in Bk. Therefore,
CB

ikrCA
ik is true for every i in schedules Bk.

It is, therefore, concluded that the jobs in Schedule B are

scheduled between SA
ik and CA

ik on any machine k. According to

definition, A is a feasible schedule with CA
max. Thus, Schedule B is a

feasible schedule whose makespan is not greater than CA
max. &

Remark 1. The optimal schedule for the problem 1=RA
ik,prmp=Tmax

is attainable using the preemptive Earliest Due Date (pEDD)
rule [15].
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