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a b s t r a c t

Gradient projection (GP) algorithm has been shown as an efficient algorithm for solving the traditional

traffic equilibrium problem with additive route costs. Recently, GP has been extended to solve the

nonadditive traffic equilibrium problem (NaTEP), in which the cost incurred on each route is not just a

simple sum of the link costs on that route. However, choosing an appropriate stepsize, which is not

known a priori, is a critical issue in GP for solving the NaTEP. Inappropriate selection of the stepsize can

significantly increase the computational burden, or even deteriorate the convergence. In this paper, a

self-adaptive gradient projection (SAGP) algorithm is proposed. The self-adaptive scheme has the ability

to automatically adjust the stepsize according to the information derived from previous iterations.

Furthermore, the SAGP algorithm still retains the efficient flow update strategy that only requires a

simple projection onto the nonnegative orthant. Numerical results are also provided to illustrate the

efficiency and robustness of the proposed algorithm.

Published by Elsevier Ltd.

1. Introduction

A basic assumption of the traditional traffic equilibrium model
is additivity (i.e., the route cost is simply the sum of the costs on
the links that constitute that route). The biggest advantage of the
additivity assumption is that it allows the route-flow variables to
be removed from the objective function of the convex mathema-
tical programming (MP) formulation (in the case of symmetric
link travel time functions) or from the inequality of the varia-
tional inequality (VI) formulation (in the case of asymmetric link
travel time functions). Thus, the corresponding traffic equilibrium
problem can be solved without the need to store routes despite
that the route-flow variables remain in the constraint set. This is a
significant benefit when one needs to solve large-scale problems
in transportation networks.

However, as pointed out by Gabriel and Bernstein [1], the
additivity assumption is not appropriate in many real life situa-
tions, where the additive route cost structure is inadequate for
addressing factors affecting a variety of transportation policies,
such as nonlinear value of travel times, route-specific tolls, and
emissions fees. A few studies have been performed by using
different nonadditive route cost structures, such as the route-
specific travel costs [2,19], bi-criteria nonlinear route costs with

elastic demand [3], length-based and congestion-based common-
ality factors used in the C-logit stochastic user equilibrium
model [4], entry-exit based toll charges [5,6], and feeder bus
systems [7]. Recently, the nonadditive route costs have been
applied to model risk-averse behavior in the route choice decision
process [8–12]. Some formulations and properties of the non-
additive traffic equilibrium problems (NaTEP) were also explored,
such as the nonlinear time/money relation [13], uniqueness and
convexity of the bi-criteria traffic equilibrium problem [14], and
the monotonicity of NaTEP formulated as a monotone mixed
complementarity problem [15]. Furthermore, Altman and Wyn-
ter [16] discussed the nonadditive cost structures in both trans-
portation and telecommunication networks.

Under the nonadditivity assumption, the corresponding traffic
equilibrium problem has to be formulated in the route-flow
space, and thus cannot be solved using the traditional link-based
algorithms, such as the Frank–Wolfe algorithm (see [17] for the
details of the algorithm). Furthermore, as indicated by Bernstein
and Gabriel [18], the diagonalization methods also do not work
well on the nonadditive problem, since the diagonalized subpro-
blems are poor approximations of the true problem.

Different formulations and solution approaches have been
presented for solving various nonadditive traffic equilibrium
problems. For example, Bernstein and Gabriel [18] presented
a non-smooth equation/sequential quadratic programming
(NE/SQP) method for solving the NaTEP with elastic demands.
The method is based on first transforming the nonlinear
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complementarity problem (NCP) formulation of the NaTEP into a
set of non-smooth equations and then finding the zero point of a
non-smooth, non-convex optimization problem. Lo and Chen [19]
used a new gap function proposed by Fischer [20] to convert the
NCP formulation to an equivalent unconstrained optimization
problem, which is smooth and convex. The unconstrained nature
makes available a large number of already developed solution
algorithms, such as the Newton method, Quasi-Newton method,
Gradient method, etc. [21]. Lo and Chen [22] provided an alter-
nate formulation via a smooth gap function using both route
flows and O–D costs as the decision variables. Chen et al.
[2] suggested a self-adaptive projection and contraction (PC)
algorithm for solving a monotone VI formulation as a special case
of the NaTEP with elastic demands. Han and Lo [23] also proposed
a descent method for the co-coercive VI formulation to solve the
NaTEP with elastic demand. The advantage of the last two
algorithms is its simplicity in numerical implementations, since
both only need some function evaluations of the mapping and a
few trivial projection operations on the nonnegative orthant.

On the other hand, the gradient projection (GP) algorithm has
been shown as a successful route-based algorithm for solving the
traditional traffic equilibrium problem with additive route
costs [24,25]. Under an ingenious approach that utilizes the
special structure of the traffic equilibrium problem (see the
implementation by Jayakrishnan et al. [24] and Chen et al. [25]),
GP only needs to perform a simple projection on the nonnegative
orthant in each iteration; therefore, the required computational
effort is modest. Previous results reported by Jayakrishnan
et al. [24] and Chen et al. [25] on the GP algorithm adopt the
diagonal inverse Hessian approximation as a scaling matrix,
assume a unity stepsize in each iteration, and use the ‘‘one-at-a-

time’’ flow update strategy to equilibrate route flows one origin–
destination (O–D) pair at a time. Though a near-optimal solution
(e.g., 0.001 as the stopping criterion) can be achieved quickly, GP

may have difficulty in obtaining the optimal solution (i.e., very
accurate solution). This is partly due to the unity stepsize
assumption purposely designed in GP to avoid expensive line
searches. Attracted by the efficiency and simplicity of the GP

algorithm, Scott and Bernstein [26] extended it for solving the
NaTEP by using the ‘all-at-once’ flow update strategy and a
modified scaling matrix to reflect the nonadditive route costs.
However, the problem of choosing an appropriate stepsize is a
critical issue in GP for solving the NaTEP due to the complex route
cost structure. The results reported in [26] were mixed. For the
Sioux Falls network, a ‘‘trial-and-error’’ approach of choosing a
fixed stepsize was used to ensure convergence.

Thus, our study is motivated to develop a robust stepsize
scheme in GP for solving the NaTEP. In this paper, a self-adaptive
gradient projection (SAGP) algorithm is provided. The self-adap-
tive scheme has been successfully embedded in the original
Goldstein–Levitin–Polyak (GLP) projection algorithm by Han and
Sun [27] and demonstrated by Zhou and Chen [28] for solving the
asymmetric traffic equilibrium problem. It has the ability to
automatically adjust the stepsize according to the information
derived from previous iterations. Thus, it is not necessary to use
the ‘‘trial-and-error’’ approach as suggested by Scott and Bern-
stein [26] to select a suitable fixed stepsize. The self-adaptive
scheme can significantly enhance the robustness and efficiency of
the algorithm. Furthermore, the SAGP algorithm still retains the
simple flow update strategy (i.e., simple projection on the
nonnegative orthant), thus avoiding the need to solve convex
quadratic programs in the original GLP projection algorithm.

The remainder of the paper is organized as follows: a general
VI formulation of the NaTEP is given in Section 2; Section 3
discusses the gradient projection algorithm; Section 4 presents
the self-adaptive gradient projection (SAGP) algorithm as well as

its convergence; numerical results are provided in Section 5 to
illustrate the efficiency and robustness of the SAGP algorithm;
finally, conclusions are summarized and some future researches
are suggested in Section 6.

2. Formulation of the nonadditive traffic equilibrium
problem

Throughout this study, we assume the origin–destination
(O–D) travel demands are given and fixed. Consider a strongly
connected network [N, A], where N and A denote the sets of nodes
and links, respectively. Let R and S denote a subset of N for which
travel demand qrs is generated from origin rAR to destination sAS.
The assumption of a strongly connected network guarantees that
there exists at least one route from every O–D pair with positive
travel demand. Let f rs

p denote the flow on route pAPrs, where Prs is
a set of routes from origin r to destination s. Let D¼ ½drs

pa� denote
the route–link incidence matrix, where drs

pa ¼ 1 if route p from
origin r to destination s uses link a, and 0, otherwise. Then, we
have the following relationships:

qrs ¼
X

pAPrs

f rs
p , 8rAR, sAS, ð1Þ

va ¼
X
rAR

X
sAS

X
pAPrs

f rs
p drs

pa, 8aAA, ð2Þ

f rs
p Z0, 8pAPrs, rAR, sAS, ð3Þ

where (1) is the travel demand conservation constraint; (2) is a
definitional constraint that sums up all route flows that pass
through a given link a; and (3) is a non-negativity constraint on
route flows.

Under the symmetric link cost and additive route cost assump-
tions, the traditional traffic equilibrium model can be formulated
as a convex mathematical program and solved by a link-based
traffic assignment algorithm (e.g., the Frank–Wolfe algorithm).
However, under the nonadditive route cost structure (i.e., not only
that the additivity assumption does not hold, the symmetry
assumption is also not satisfied), it is therefore necessary to
formulate the problem using route-flow variables and solve
it with a route-based traffic assignment algorithm. A general
nonadditive route cost function can be written as follows [1]:

Zrs
p ¼ g

rs
p þ

X
aAA

rdrs
pataþgp

X
aAA

drs
pata

 !
, 8pAPrs, rAR, sAS, ð4Þ

where grs
p denotes the financial cost (such as toll) specific to route

p between origin r and destination s, r is the operating cost per
unit travel time (e.g., fuel consumption, vehicle rental), and gp is a
function describing the value of time for route p, which could be
nonlinear. The second and third terms transfer travel times into
an equivalent amount of money consistent with the first term.
Typically, the general route cost function Zrs

p and the link travel
time function ta are assumed to be positive and continuous; the
operating cost factor r is positive; the route-specific cost grs

p and
the valuation of time function gp( � ) are continuous and
nonnegative.

Let g denote the route-cost vector ð. . .,Zrs
p ,. . .ÞT , prs denote the

minimal cost between O–D pair (r, s), and f denote the route-flow
vector ð. . .,f rs

p ,. . .ÞT . The traffic equilibrium problem is to find
the traffic-flow pattern by allocating the O–D demands to the
network such that all used routes between each O–D pair have
equal and minimum travel cost, and no unused route has a lower
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