
Metaheuristics for the traveling salesman problem with pickups, deliveries
and handling costs

Günes- Erdoǧan a,�, Maria Battarra b, Gilbert Laporte c, Daniele Vigo d

a Industrial Engineering Department, Özyeǧin University, Kus-bakıs-ı Cad. 2, 34662 Altunizade, _Istanbul, Turkey
b School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK
c Canada Research Chair in Distribution Management, HEC Montréal, 3000 chemin de la Côte-Sainte-Catherine, Montreal, Canada H3T 2A7
d DEIS, University of Bologna, via Venezia 52, 47521 Cesena, Italy

a r t i c l e i n f o

Available online 22 July 2011

Keywords:

Traveling salesman problem

Handling cost

Pickup and delivery

Metaheuristics

a b s t r a c t

This paper studies the Traveling Salesman Problem with Pickups, Deliveries, and Handling Costs. The

subproblem of minimizing the handling cost for a fixed route is analyzed in detail. It is solved by means

of an exact dynamic programming algorithm with quadratic complexity and by an approximate linear

time algorithm. Three metaheuristics integrating these solution methods are developed. These are

based on tabu search, iterated local search and iterated tabu search. The three heuristics are tested and

compared on instances adapted from the related literature. The results show that the combination of

tabu search and exact dynamic programming performs the best, but using the approximate linear time

algorithm considerably decreases the CPU time at the cost of slightly worse solutions.

& 2011 Published by Elsevier Ltd.

1. Introduction

The Traveling Salesman Problem with Pickups, Deliveries and

Handling Costs (TSPPD-H), recently introduced by Battarra et al.
[1], is a generalization of the Single Vehicle Pickup and Delivery

Problem with combined demands (SVPDP–P&D) (see [2]). As in the
SVPDP–P&D, the aim is to design an optimal tour through the depot
and a set of customers, each of which requires a pickup service, a
delivery service, or both. The vehicle leaves the depot carrying all
the deliveries, visits each customer once, and returns to the depot
carrying all pickups, without ever exceeding its capacity.

In the TSPPD-H the vehicle is represented as a single stack in
which the commodities can be loaded and unloaded only from the
rear. This vehicle configuration is commonly encountered in real
world applications. The vehicle is a stack whenever the goods
have one dimension comparable to the truck width. In Battarra
et al. [1], the collection and delivery of damaged and undamaged
bicycles in public bicycle sharing systems is presented as an
example of TSPPD-H; we also mention the problem of delivering
calves to farms and collecting mature cows [3]. Note that under
the assumption of a single stack, pickup commodities may
obstruct the delivery operations.

It is common practice to either disregard the handling opera-
tions and leave the driver free to decide about them, or to impose
specific tour shapes [4,5] to handle the obstruction issue. For
example, by forcing some or all delivery operations to take place

at the beginning of the tour in order to create some empty space
on board. However, non-Hamiltonian tours can increase routing
costs substantially. An example of LIFO application is the auto-
carrier transportation problem presented in Dell’Amico et al. [6],
in which it is shown that a significant improvement in routing
cost could be obtained by dropping the LIFO constraint and
allowing handling operations.

The TSPPD-H consists of determining an Hamiltonian tour in
which the commodities on board are possibly rearranged at the
customer locations. The objective is to minimize the sum of
handling and routing costs, the handling cost being the time spent
in rearranging the load on board in the vehicle, and the routing cost
the time required to actually perform the Hamiltonian tour.
The problem becomes particularly interesting whenever the
handling cost is comparable to the routing cost and a tradeoff
between handling and routing can be envisaged. In fact, if the
routing cost is significantly higher than the handling cost, the
problem can be solved efficiently as a SVPDP–P&D and then by
optimizing the handling decisions based on the routing decisions.
On the other hand, if the handling cost is significantly higher than
the routing cost, the problem can be solved as a Double-Path Single

Vehicle Pick and Delivery Problem [4], or possibly by using two
vehicles, one for the pickup and one for the delivery service.

There is a growing interest in SVPDP–P&Ds involving handling
decisions. Variants of the Traveling Salesman Problem with Pickups,
Deliveries with LIFO loading [7,8], FIFO loading [9] and multiple
stacks [10,11] have been recently studied, as well as Vehicle Routing
Problems including loading issues [12]. We refer the reader to the
surveys by Iori and Martello [13] and Laporte [14]. All applications
pertaining to the SVPDP–P&Ds with rear-loading are valid for the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/caor

Computers & Operations Research

0305-0548/$ - see front matter & 2011 Published by Elsevier Ltd.

doi:10.1016/j.cor.2011.07.013

� Corresponding author.

E-mail address: gunes.erdogan@ozyegin.edu.tr (G. Erdoǧan).

Computers & Operations Research 39 (2012) 1074–1086

www.elsevier.com/locate/caor
dx.doi.org/10.1016/j.cor.2011.07.013
mailto:gunes.erdogan@ozyegin.edu.tr
dx.doi.org/10.1016/j.cor.2011.07.013
dx.doi.org/10.1016/j.cor.2011.07.013


TSPPD-H if the vehicle load can be rearranged, and hence there exists
a potential for cost reduction in these problems.

Battarra et al. [1] have shown that the optimal loading decisions
for a given tour can be determined in polynomial time. However,
these decisions cannot easily be implemented in practice since they
may require an excessive amount of handling. Hence, three ele-
mentary loading policies were proposed in order to simplify the
handling operations. Branch-and-cut algorithms were developed
for each policy. The results highlighted the relative importance of
handling costs with respect to routing costs. Policies 1 and 2 (in
which the pickup commodities are located either in the rear or in
the front of the vehicle at each customer, respectively) are very easy
to implement, but compromise the overall solution quality. On the
other hand, Policy 3 achieves high quality results. This policy
consists of deciding either to place, at each customer location, the
pickup commodities in the rear or in the front of the vehicle. Policy
3 is simpler to implement than the optimal policy for the driver
because the pickup and delivery commodities on board exhibit a
contiguous pattern. Moreover, it is more efficient than the first two
policies, because it avoids long queues of pickup commodities at the
rear, as well as too frequent handling of delivery commodities.

The TSPPD-H, being a generalization of the SVPDP–P&D, is an
NP-hard problem which combines the complexity of routing and
scheduling decisions. Although promising results were reported
under Policy 3, exact algorithms were only able to solve small-
size instances (with up to 25 customers). In this paper, we
therefore develop and compare powerful metaheuristics for the
TSPPD-H. Our goal is to determine high quality solutions for large
size instances within limited computing time. To this end, we first
study the handling cost subproblem in greater depth, we next
analyze possible neighborhoods and their evaluation, and we
finally describe the three metaheuristics.

The remainder of the paper is organized as follows. Section 2
introduces the notation and describes the algorithms developed
for the handling cost subproblem. Local search operators are
analyzed in Section 3. Section 4 describes the proposed meta-
heuristic algorithms. Computational results are presented in
Section 5, followed by conclusions in Section 6.

2. The handling cost subproblem

Let G¼(V, A) be a complete directed graph where V¼{0,y,n} is
the vertex set and A is the arc set. Vertex 0 is the depot, whereas
Vc ¼ V\f0g are the customers. Each arc ði,jÞAA is associated with a
travel time cij, and each customer iAVc are associated with ai

delivery commodity units and bi pickup commodity units. There
are a0 ¼

P
iAVc

ai delivery commodity units originating from the
depot, and b0 ¼

P
iAVcbi pickup commodity units destined to

the depot. We assume both commodities have the same unit
dimensions (for example boxes, pallets, or containers of the same
goods). We denote the delivery and pickup commodities as type a

and b, respectively. The vehicle capacity is Q units.
As previously stated, the vehicle follows a Last-In-First-Out

(LIFO) loading policy [15]. When visiting a customer, the type b

commodities obstructing the delivery commodities have to be
unloaded. The time spent in unloading and reloading a type b

commodity on board is equal to hb. In addition, type a commod-
ities may be unloaded and reloaded in order to place pickup
commodities in a more suitable position. The time spent to
unload and reload a type a commodity is equal to ha. We denote
these unloading and reloading activities as additional operations.
The handling operations strictly required to perform delivery and
pickup are constant and unavoidable, and are therefore not taken
into account in the handling cost evaluation. We refer to Battarra

et al. [1] for an exact mixed integer linear programming formula-
tion of the problem.

The optimal solution for the TSPPD-H is a Hamiltonian tour on
G which minimizes the sum of routing costs and additional
operation costs. As a consequence, in a local search algorithm,
moves in the neighborhood of a solution have to evaluated
considering these two aspects. The extra travel time cost can be
simply computed as in the routing literature: the cost of the
newly introduced arcs is added to the previous routing cost,
whereas the cost of the deleted arcs is subtracted. This extra
travel time computation is a constant time complexity operation,
so it does not interfere with the algorithm speed. On the other
hand, computing the handling cost variation is more difficult. For
example, every time a customer is relocated in the tour, the
overall handling cost has to be computed from scratch. The
handling cost computation can be a time consuming task: any
improvement to speed up this task should then result in an
immediate reduction of the overall computing time.

In the remainder of this section we propose two ways of
solving the handling cost subproblem. The first one is an exact
dynamic programming algorithm with quadratic time and space
complexity, and the second one is a linear time heuristic based on
the solution of a special case of the handling cost subproblem.

2.1. Dynamic programming algorithm

Given a tour, in order to compute an exact optimal solution to
the handling cost subproblem under Policy 3, we need to decide
between placing the pickup commodities at the rear (Policy 1) or at
the front (Policy 2) of the vehicle at every customer location. The
cost of each decision is based on the current configuration of the
commodities on board. This naturally leads to the idea of using the
number of pickup and delivery boxes as state variables. However,
this approach inevitably leads to a pseudopolynomial complexity
algorithm. We now provide a genuinely polynomial dynamic
programming algorithm to solve the handling cost subproblem.

For the sake of brevity and clarity, assume that we have
renumbered the customers according to their order in the given
tour. Let f(i) denote the optimal cost of handling customers iþ1 to
n, given that Policy 2 has been applied at customer i. Furthermore,
let pij denote the cost of applying Policy 1 at customers iþ1 to
j�1, and Policy 2 at customer j:

ðDPÞ f ðiÞ ¼ min
jA fiþ1,ng

fpijþ f ðjÞg, 8iAf0, . . . ,n�1g, ð1Þ

f ðnÞ ¼ 0: ð2Þ

In DP, there are n states, each of which requires OðnÞ comput-
ing time, which yields a complexity of Oðn2Þ. However, the
application of DP requires the values of pij,8i,jAf1, . . . ,ng to be
computed beforehand. This is achieved through Algorithm 2.1,
which also has an Oðn2Þ complexity. In the pseudo-code, a0 and b0

denote the number of delivery and pickup commodities on board,
respectively, and y is the cumulative cost of applying Policy 1.

Algorithm 2.1. P ða,b,ha,hbÞ

for i¼0 to (n�1)

b0 ¼ 0; y¼ 0; // Policy 2 has been applied
// compute the remaining number of delivery items on board
a0 ¼ a0;
for j¼1 to i

a0 ¼ a0�aj;

for j¼ iþ1 to n

a0 ¼ a0�aj; // deliver, no matter Policy 1 or 2

// cost of Policy 1 up to this point plus the cost of Policy 2

if ðb0 þbj40Þ pij ¼ yþhaa0 þhbb
0

else pij ¼ y

G. Erdoǧan et al. / Computers & Operations Research 39 (2012) 1074–1086 1075



Download English Version:

https://daneshyari.com/en/article/10348194

Download Persian Version:

https://daneshyari.com/article/10348194

Daneshyari.com

https://daneshyari.com/en/article/10348194
https://daneshyari.com/article/10348194
https://daneshyari.com

